{"title":"含有石墨烯的球磨 MoS2 增强了氢气进化反应的催化活性。","authors":"Linghui Li, Satish Laxman Shinde, Takeshi Fujita, Takahiro Kondo","doi":"10.1080/14686996.2024.2359360","DOIUrl":null,"url":null,"abstract":"<p><p>The hydrogen evolution reaction (HER) is an important phenomenon in water splitting. Consequently, the development of an active, earth-abundant, and inexpensive HER catalyst is highly desired. MoS<sub>2</sub> has drawn considerable interest as an HER catalyst because it is composed of non-precious metal and exhibits high catalytic activity in the nanosheet form. In this study, size-controlled MoS<sub>2</sub> particles were synthesized by ball milling. The as-prepared samples exhibited significantly enhanced electrochemical and catalytic properties compared to those of pristine bulk MoS<sub>2</sub>. Furthermore, the HER activity improved further upon the introduction of graphene into the as-prepared ball-milled samples. In particular, the MoS<sub>2</sub> sample ball-milled for 12 h mixed with graphene exhibited optimal performance, showing an overpotential (160 mV at 10 mA cm<sup>-2</sup>) that was ~ 335 mV lower than that of pristine bulk MoS<sub>2</sub>. The superior catalytic activity was ascribed to the exposed edge sites, sulfur vacancies, and 1T phase of MoS<sub>2</sub>, as well as the noteworthy fortifying effect of the electronically conductive flexible material, graphene. The results provide a promising strategy for its application as an efficient and stable HER catalyst.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2359360"},"PeriodicalIF":7.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177716/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ball-milled MoS<sub>2</sub> with graphene shows enhanced catalytic activity for hydrogen evolution reaction.\",\"authors\":\"Linghui Li, Satish Laxman Shinde, Takeshi Fujita, Takahiro Kondo\",\"doi\":\"10.1080/14686996.2024.2359360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hydrogen evolution reaction (HER) is an important phenomenon in water splitting. Consequently, the development of an active, earth-abundant, and inexpensive HER catalyst is highly desired. MoS<sub>2</sub> has drawn considerable interest as an HER catalyst because it is composed of non-precious metal and exhibits high catalytic activity in the nanosheet form. In this study, size-controlled MoS<sub>2</sub> particles were synthesized by ball milling. The as-prepared samples exhibited significantly enhanced electrochemical and catalytic properties compared to those of pristine bulk MoS<sub>2</sub>. Furthermore, the HER activity improved further upon the introduction of graphene into the as-prepared ball-milled samples. In particular, the MoS<sub>2</sub> sample ball-milled for 12 h mixed with graphene exhibited optimal performance, showing an overpotential (160 mV at 10 mA cm<sup>-2</sup>) that was ~ 335 mV lower than that of pristine bulk MoS<sub>2</sub>. The superior catalytic activity was ascribed to the exposed edge sites, sulfur vacancies, and 1T phase of MoS<sub>2</sub>, as well as the noteworthy fortifying effect of the electronically conductive flexible material, graphene. The results provide a promising strategy for its application as an efficient and stable HER catalyst.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2359360\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177716/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2359360\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2359360","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
氢进化反应(HER)是水分离中的一个重要现象。因此,开发一种活性高、富含地球资源且价格低廉的氢进化催化剂是非常必要的。MoS2 作为一种 HER 催化剂引起了人们的极大兴趣,因为它由非贵金属组成,并以纳米片的形式表现出很高的催化活性。本研究采用球磨法合成了尺寸可控的 MoS2 颗粒。与原始块状 MoS2 相比,制备的样品具有明显增强的电化学和催化特性。此外,在球磨制备的样品中引入石墨烯后,HER 活性进一步提高。特别是与石墨烯混合球磨 12 小时的 MoS2 样品表现出最佳性能,其过电位(10 mA cm-2 时为 160 mV)比原始块状 MoS2 低 ~ 335 mV。卓越的催化活性归功于暴露的边缘位点、硫空位和 MoS2 的 1T 相,以及电子导电柔性材料石墨烯的显著强化作用。这些结果为其作为高效、稳定的 HER 催化剂提供了一种前景广阔的应用策略。
Ball-milled MoS2 with graphene shows enhanced catalytic activity for hydrogen evolution reaction.
The hydrogen evolution reaction (HER) is an important phenomenon in water splitting. Consequently, the development of an active, earth-abundant, and inexpensive HER catalyst is highly desired. MoS2 has drawn considerable interest as an HER catalyst because it is composed of non-precious metal and exhibits high catalytic activity in the nanosheet form. In this study, size-controlled MoS2 particles were synthesized by ball milling. The as-prepared samples exhibited significantly enhanced electrochemical and catalytic properties compared to those of pristine bulk MoS2. Furthermore, the HER activity improved further upon the introduction of graphene into the as-prepared ball-milled samples. In particular, the MoS2 sample ball-milled for 12 h mixed with graphene exhibited optimal performance, showing an overpotential (160 mV at 10 mA cm-2) that was ~ 335 mV lower than that of pristine bulk MoS2. The superior catalytic activity was ascribed to the exposed edge sites, sulfur vacancies, and 1T phase of MoS2, as well as the noteworthy fortifying effect of the electronically conductive flexible material, graphene. The results provide a promising strategy for its application as an efficient and stable HER catalyst.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.