{"title":"解码聚合物-无机散热器的热特性:利用热解质谱法的数据驱动方法。","authors":"Yusuke Hibi, Yasuhiro Tsuyuki, Satoshi Ishii, Eiichi Ide, Masanobu Naito","doi":"10.1080/14686996.2024.2362125","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric materials can boost their performances by strategically incorporating inorganic substances. Heat dissipators are a representative class of such composite materials, where inorganic fillers and matrix polymers contribute to high thermal conductivity and strong adhesion, respectively, resulting in excellent heat dissipation performance. However, due to the complex interaction between fillers and polymers, even slight differences in structural parameters, e.g. dispersion/aggregation degree of fillers and crosslink density of polymers, may significantly impact material performance, complicating the quality management and guidelines for material developments. Therefore, we introduce pyrolysis mass spectra (MS) as material descriptors. On the basis of these spectra, we construct prediction models using a data-driven approach, specifically focusing on thermal conductivity and adhesion, which are key indicators for heat dissipating performance. Pyrolysis-MS observes thermally decomposable polymers, which occupy only 0.1 volume fraction of the heat dissipators; nevertheless, the physical states of non-decomposable inorganic fillers are implicitly reflected in the pyrolyzed fragment patterns of the matrix polymers. Consequently, pyrolysis-MS provides sufficient information to construct accurate models for predicting heat dissipation performance, simplifying quality management by substituting time-consuming performance evaluations with rapid pyrolysis-MS measurements. Furthermore, we elucidate that higher crosslinking density of the matrix polymers enhances thermal conductivity. This data-driven method promises to streamline the identification of key functional factors in complex composite materials.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2362125"},"PeriodicalIF":7.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177714/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding thermal properties in polymer-inorganic heat dissipators: a data-driven approach using pyrolysis mass spectrometry.\",\"authors\":\"Yusuke Hibi, Yasuhiro Tsuyuki, Satoshi Ishii, Eiichi Ide, Masanobu Naito\",\"doi\":\"10.1080/14686996.2024.2362125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymeric materials can boost their performances by strategically incorporating inorganic substances. Heat dissipators are a representative class of such composite materials, where inorganic fillers and matrix polymers contribute to high thermal conductivity and strong adhesion, respectively, resulting in excellent heat dissipation performance. However, due to the complex interaction between fillers and polymers, even slight differences in structural parameters, e.g. dispersion/aggregation degree of fillers and crosslink density of polymers, may significantly impact material performance, complicating the quality management and guidelines for material developments. Therefore, we introduce pyrolysis mass spectra (MS) as material descriptors. On the basis of these spectra, we construct prediction models using a data-driven approach, specifically focusing on thermal conductivity and adhesion, which are key indicators for heat dissipating performance. Pyrolysis-MS observes thermally decomposable polymers, which occupy only 0.1 volume fraction of the heat dissipators; nevertheless, the physical states of non-decomposable inorganic fillers are implicitly reflected in the pyrolyzed fragment patterns of the matrix polymers. Consequently, pyrolysis-MS provides sufficient information to construct accurate models for predicting heat dissipation performance, simplifying quality management by substituting time-consuming performance evaluations with rapid pyrolysis-MS measurements. Furthermore, we elucidate that higher crosslinking density of the matrix polymers enhances thermal conductivity. This data-driven method promises to streamline the identification of key functional factors in complex composite materials.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2362125\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2362125\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2362125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Decoding thermal properties in polymer-inorganic heat dissipators: a data-driven approach using pyrolysis mass spectrometry.
Polymeric materials can boost their performances by strategically incorporating inorganic substances. Heat dissipators are a representative class of such composite materials, where inorganic fillers and matrix polymers contribute to high thermal conductivity and strong adhesion, respectively, resulting in excellent heat dissipation performance. However, due to the complex interaction between fillers and polymers, even slight differences in structural parameters, e.g. dispersion/aggregation degree of fillers and crosslink density of polymers, may significantly impact material performance, complicating the quality management and guidelines for material developments. Therefore, we introduce pyrolysis mass spectra (MS) as material descriptors. On the basis of these spectra, we construct prediction models using a data-driven approach, specifically focusing on thermal conductivity and adhesion, which are key indicators for heat dissipating performance. Pyrolysis-MS observes thermally decomposable polymers, which occupy only 0.1 volume fraction of the heat dissipators; nevertheless, the physical states of non-decomposable inorganic fillers are implicitly reflected in the pyrolyzed fragment patterns of the matrix polymers. Consequently, pyrolysis-MS provides sufficient information to construct accurate models for predicting heat dissipation performance, simplifying quality management by substituting time-consuming performance evaluations with rapid pyrolysis-MS measurements. Furthermore, we elucidate that higher crosslinking density of the matrix polymers enhances thermal conductivity. This data-driven method promises to streamline the identification of key functional factors in complex composite materials.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.