{"title":"三叉神经痛模型小鼠初级躯体感觉皮层和运动皮层对胡须刺激的钙反应减少","authors":"","doi":"10.1016/j.job.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p><span><span>Chronic constriction injury (CCI) of the </span>infraorbital nerve<span><span><span> induces neuropathic pain, such as </span>allodynia<span> and hyperalgesia, in the orofacial area. However, the changes in the local circuits of the </span></span>central nervous system following CCI remain unclear. This study aimed to identify the changes following CCI in Thy1-GCaMP6s </span></span>transgenic mice.</p></div><div><h3>Methods</h3><p><span><span>Neural activity in the primary somatosensory cortex (S1) and </span>motor cortex (M1) following whisker stimulation was assessed using in vivo Ca</span><sup>2+</sup> imaging. CCI-induced changes in responses were analyzed.</p></div><div><h3>Results</h3><p>Before CCI, whisker stimulation induced a greater Ca<sup>2+</sup><span> response in the contralateral S1 than in the ipsilateral S1 and contralateral M1. The peak Ca</span><sup>2+</sup> response amplitude in the bilateral S1 and contralateral M1 decreased two days after CCI compared to before CCI. Decreased Ca<sup>2+</sup> response amplitude in these regions was observed until four days after CCI. Seven days after CCI, the Ca<sup>2+</sup> response amplitude in the contralateral S1 decreased, whereas that in the ipsilateral S1 and contralateral M1 recovered to control levels.</p></div><div><h3>Conclusion</h3><p>These results suggest that neural activity in regions receiving excitatory inputs via corticocortical pathways recovers earlier than in regions receiving thalamocortical inputs. (185/250 words)</p></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"66 3","pages":"Pages 587-593"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction in calcium responses to whisker stimulation in the primary somatosensory and motor cortices of the model mouse with trigeminal neuropathic pain\",\"authors\":\"\",\"doi\":\"10.1016/j.job.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p><span><span>Chronic constriction injury (CCI) of the </span>infraorbital nerve<span><span><span> induces neuropathic pain, such as </span>allodynia<span> and hyperalgesia, in the orofacial area. However, the changes in the local circuits of the </span></span>central nervous system following CCI remain unclear. This study aimed to identify the changes following CCI in Thy1-GCaMP6s </span></span>transgenic mice.</p></div><div><h3>Methods</h3><p><span><span>Neural activity in the primary somatosensory cortex (S1) and </span>motor cortex (M1) following whisker stimulation was assessed using in vivo Ca</span><sup>2+</sup> imaging. CCI-induced changes in responses were analyzed.</p></div><div><h3>Results</h3><p>Before CCI, whisker stimulation induced a greater Ca<sup>2+</sup><span> response in the contralateral S1 than in the ipsilateral S1 and contralateral M1. The peak Ca</span><sup>2+</sup> response amplitude in the bilateral S1 and contralateral M1 decreased two days after CCI compared to before CCI. Decreased Ca<sup>2+</sup> response amplitude in these regions was observed until four days after CCI. Seven days after CCI, the Ca<sup>2+</sup> response amplitude in the contralateral S1 decreased, whereas that in the ipsilateral S1 and contralateral M1 recovered to control levels.</p></div><div><h3>Conclusion</h3><p>These results suggest that neural activity in regions receiving excitatory inputs via corticocortical pathways recovers earlier than in regions receiving thalamocortical inputs. (185/250 words)</p></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"66 3\",\"pages\":\"Pages 587-593\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007924001403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007924001403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Reduction in calcium responses to whisker stimulation in the primary somatosensory and motor cortices of the model mouse with trigeminal neuropathic pain
Objective
Chronic constriction injury (CCI) of the infraorbital nerve induces neuropathic pain, such as allodynia and hyperalgesia, in the orofacial area. However, the changes in the local circuits of the central nervous system following CCI remain unclear. This study aimed to identify the changes following CCI in Thy1-GCaMP6s transgenic mice.
Methods
Neural activity in the primary somatosensory cortex (S1) and motor cortex (M1) following whisker stimulation was assessed using in vivo Ca2+ imaging. CCI-induced changes in responses were analyzed.
Results
Before CCI, whisker stimulation induced a greater Ca2+ response in the contralateral S1 than in the ipsilateral S1 and contralateral M1. The peak Ca2+ response amplitude in the bilateral S1 and contralateral M1 decreased two days after CCI compared to before CCI. Decreased Ca2+ response amplitude in these regions was observed until four days after CCI. Seven days after CCI, the Ca2+ response amplitude in the contralateral S1 decreased, whereas that in the ipsilateral S1 and contralateral M1 recovered to control levels.
Conclusion
These results suggest that neural activity in regions receiving excitatory inputs via corticocortical pathways recovers earlier than in regions receiving thalamocortical inputs. (185/250 words)