Patrick R Doran, Natalie Fomin-Thunemann, Rockwell P Tang, Dora Balog, Bernhard Zimmerman, Kıvılcım Kılıç, Emily A Martin, Sreekanth Kura, Harrison P Fisher, Grace Chabbott, Joel Herbert, Bradley C Rauscher, John X Jiang, Sava Sakadzic, David A Boas, Anna Devor, Ichun Anderson Chen, Martin Thunemann
{"title":"宽视场活体成像系统,具有两个荧光通道和两个反射通道、单个 sCMOS 检测器和屏蔽照明。","authors":"Patrick R Doran, Natalie Fomin-Thunemann, Rockwell P Tang, Dora Balog, Bernhard Zimmerman, Kıvılcım Kılıç, Emily A Martin, Sreekanth Kura, Harrison P Fisher, Grace Chabbott, Joel Herbert, Bradley C Rauscher, John X Jiang, Sava Sakadzic, David A Boas, Anna Devor, Ichun Anderson Chen, Martin Thunemann","doi":"10.1117/1.NPh.11.3.034310","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (\"mesoscopic\") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts.</p><p><strong>Aim: </strong>We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels.</p><p><strong>Approach: </strong>Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector.</p><p><strong>Results: </strong>We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved \"crystal skull\" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor <math> <mrow> <msub><mrow><mi>GRAB</mi></mrow> <mrow><mi>ACh</mi> <mn>3.0</mn></mrow> </msub> </mrow> </math> . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes.</p><p><strong>Conclusions: </strong>Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"034310"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177117/pdf/","citationCount":"0","resultStr":"{\"title\":\"Widefield <i>in vivo</i> imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination.\",\"authors\":\"Patrick R Doran, Natalie Fomin-Thunemann, Rockwell P Tang, Dora Balog, Bernhard Zimmerman, Kıvılcım Kılıç, Emily A Martin, Sreekanth Kura, Harrison P Fisher, Grace Chabbott, Joel Herbert, Bradley C Rauscher, John X Jiang, Sava Sakadzic, David A Boas, Anna Devor, Ichun Anderson Chen, Martin Thunemann\",\"doi\":\"10.1117/1.NPh.11.3.034310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (\\\"mesoscopic\\\") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts.</p><p><strong>Aim: </strong>We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels.</p><p><strong>Approach: </strong>Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector.</p><p><strong>Results: </strong>We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved \\\"crystal skull\\\" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor <math> <mrow> <msub><mrow><mi>GRAB</mi></mrow> <mrow><mi>ACh</mi> <mn>3.0</mn></mrow> </msub> </mrow> </math> . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes.</p><p><strong>Conclusions: </strong>Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"034310\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.034310\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.034310","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination.
Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts.
Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels.
Approach: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector.
Results: We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes.
Conclusions: Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.