对来自白色念珠菌和白色念珠菌的重组烯醇化酶蛋白(潜在候选疫苗)进行分子克隆、表达、纯化和表位分析。

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI:10.3389/ffunb.2024.1399546
Manisha Shukla, Rohit Singh, Pankaj Chandley, Soma Rohatgi
{"title":"对来自白色念珠菌和白色念珠菌的重组烯醇化酶蛋白(潜在候选疫苗)进行分子克隆、表达、纯化和表位分析。","authors":"Manisha Shukla, Rohit Singh, Pankaj Chandley, Soma Rohatgi","doi":"10.3389/ffunb.2024.1399546","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida albicans</i> is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. <i>Candida auris</i> has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against <i>C. auris</i> infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from <i>C. albicans</i> and <i>C. auris</i> were cloned into suitable expression vector and transformed into <i>Escherichia coli</i> expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both <i>C. albicans</i> and <i>C. auris</i>. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across <i>C. albicans</i> and <i>C. auris</i> Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176544/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular cloning, expression, and purification, along with <i>in silico</i> epitope analysis of recombinant enolase proteins (a potential vaccine candidate) from <i>Candida albicans</i> and <i>Candida auris</i>.\",\"authors\":\"Manisha Shukla, Rohit Singh, Pankaj Chandley, Soma Rohatgi\",\"doi\":\"10.3389/ffunb.2024.1399546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Candida albicans</i> is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. <i>Candida auris</i> has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against <i>C. auris</i> infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from <i>C. albicans</i> and <i>C. auris</i> were cloned into suitable expression vector and transformed into <i>Escherichia coli</i> expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both <i>C. albicans</i> and <i>C. auris</i>. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across <i>C. albicans</i> and <i>C. auris</i> Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.</p>\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176544/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2024.1399546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2024.1399546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白念珠菌是全身性念珠菌病的主要致病菌,但如今其他非白念珠菌属的念珠菌也逐渐广泛传播。白色念珠菌已成为一种致命的耐多药真菌病原体,对全球公共卫生构成重大威胁。在缺乏有效抗真菌疗法的情况下,开发针对念珠菌感染的疫苗势在必行。烯醇化酶是一种关键的糖酵解酶,由于其免疫原性和在真菌毒力中的重要作用,它已成为一种有希望的候选疫苗。在此,我们将白僵菌和法氏囊菌的全长烯醇化酶基因序列克隆到合适的表达载体中,并将其转化到大肠杆菌表达宿主中。重组烯醇化酶蛋白被成功表达,并在原生条件下使用亲和层析法纯化,随后进行了SDS-PAGE表征和Western印迹分析。CD 光谱分析验证了表达的蛋白质以可溶性原生构象存在。初步的硅学研究验证了从白喉杆菌和白喉杆菌中分离出来的重组烯醇化酶蛋白的免疫原性。此外,生物信息学分析表明,白僵菌酵素酶蛋白和阿氏杆菌酵素酶蛋白的B细胞和T细胞表位是一致的,这表明它们可能具有交叉反应性和广谱疫苗功效。预计我们的研究结果将在推进系统性念珠菌病的治疗和诊断策略方面发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular cloning, expression, and purification, along with in silico epitope analysis of recombinant enolase proteins (a potential vaccine candidate) from Candida albicans and Candida auris.

Candida albicans is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. Candida auris has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against C. auris infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from C. albicans and C. auris were cloned into suitable expression vector and transformed into Escherichia coli expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both C. albicans and C. auris. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across C. albicans and C. auris Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Corrigendum: The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. Dual-RNA-sequencing to elucidate the interactions between sorghum and Colletotrichum sublineola. Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell formation in Cryptococcus neoformans. Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, Magnaporthiopsis maydis. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1