{"title":"用于医学图像去噪的特定通道和空间残留注意力网络","authors":"Jianhua Hu, Woqing Huang, Haoxian Zhang, Zhanjiang Yuan, Xiangfei Feng, Weimei Wu","doi":"10.1615/CritRevBiomedEng.2024053351","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image quality is crucial for physicians to ensure accurate diagnosis and therapeutic strategies. However, due to the interference of noise, there are often various types of noise and artifacts in medical images. This not only damages the visual clarity of images, but also reduces the accuracy of information extraction. Considering that the edges of medical images are rich in high-frequency information, to enhance the quality of medical images, a dual attention mechanism, the channel-specific and spatial residual attention network (CSRAN) in the U-Net framework is proposed. The CSRAN seamlessly integrates the U-Net architecture with channel-wise and spatial feature attention (CSAR) modules, as well as low-frequency channel attention modules. Combined with the two modules, the ability of medical image processing to extract high-frequency features is improved, thereby significantly improving the edge effects and clarity of reconstructed images. This model can present better performance in capturing high-frequency information and spatial structures in medical image denoising and super-resolution reconstruction tasks. It cannot only enhance the ability to extract high-frequency features and strengthen its nonlinear representation capability, but also endow strong edge detection capabilities of the model. The experimental results further prove the superiority of CSRAN in medical image denoising and super-resolution reconstruction tasks.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel-Specific and Spatial Residual Attention Network for Medical Image Denoising.\",\"authors\":\"Jianhua Hu, Woqing Huang, Haoxian Zhang, Zhanjiang Yuan, Xiangfei Feng, Weimei Wu\",\"doi\":\"10.1615/CritRevBiomedEng.2024053351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical image quality is crucial for physicians to ensure accurate diagnosis and therapeutic strategies. However, due to the interference of noise, there are often various types of noise and artifacts in medical images. This not only damages the visual clarity of images, but also reduces the accuracy of information extraction. Considering that the edges of medical images are rich in high-frequency information, to enhance the quality of medical images, a dual attention mechanism, the channel-specific and spatial residual attention network (CSRAN) in the U-Net framework is proposed. The CSRAN seamlessly integrates the U-Net architecture with channel-wise and spatial feature attention (CSAR) modules, as well as low-frequency channel attention modules. Combined with the two modules, the ability of medical image processing to extract high-frequency features is improved, thereby significantly improving the edge effects and clarity of reconstructed images. This model can present better performance in capturing high-frequency information and spatial structures in medical image denoising and super-resolution reconstruction tasks. It cannot only enhance the ability to extract high-frequency features and strengthen its nonlinear representation capability, but also endow strong edge detection capabilities of the model. The experimental results further prove the superiority of CSRAN in medical image denoising and super-resolution reconstruction tasks.</p>\",\"PeriodicalId\":94308,\"journal\":{\"name\":\"Critical reviews in biomedical engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2024053351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2024053351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel-Specific and Spatial Residual Attention Network for Medical Image Denoising.
Medical image quality is crucial for physicians to ensure accurate diagnosis and therapeutic strategies. However, due to the interference of noise, there are often various types of noise and artifacts in medical images. This not only damages the visual clarity of images, but also reduces the accuracy of information extraction. Considering that the edges of medical images are rich in high-frequency information, to enhance the quality of medical images, a dual attention mechanism, the channel-specific and spatial residual attention network (CSRAN) in the U-Net framework is proposed. The CSRAN seamlessly integrates the U-Net architecture with channel-wise and spatial feature attention (CSAR) modules, as well as low-frequency channel attention modules. Combined with the two modules, the ability of medical image processing to extract high-frequency features is improved, thereby significantly improving the edge effects and clarity of reconstructed images. This model can present better performance in capturing high-frequency information and spatial structures in medical image denoising and super-resolution reconstruction tasks. It cannot only enhance the ability to extract high-frequency features and strengthen its nonlinear representation capability, but also endow strong edge detection capabilities of the model. The experimental results further prove the superiority of CSRAN in medical image denoising and super-resolution reconstruction tasks.