秘鲁中部最低含氧区内和低于最低含氧区的水深梯度上的大型底栖生物群落结构和多样性

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-Sea Research Part I-Oceanographic Research Papers Pub Date : 2024-06-14 DOI:10.1016/j.dsr.2024.104341
Edson Gómez , Leonardo Romero , Luis Quipúzcoa , Aldo S. Pacheco
{"title":"秘鲁中部最低含氧区内和低于最低含氧区的水深梯度上的大型底栖生物群落结构和多样性","authors":"Edson Gómez ,&nbsp;Leonardo Romero ,&nbsp;Luis Quipúzcoa ,&nbsp;Aldo S. Pacheco","doi":"10.1016/j.dsr.2024.104341","DOIUrl":null,"url":null,"abstract":"<div><p>Oxygen minimum zones (OMZs) are characteristic of highly productive upwelling ecosystems and create unique conditions for benthic organisms that can adapt to hypoxic conditions and high quantities of organic material. Community structure, macrobenthic organism diversity, and biomass of giant filamentous bacteria (<em>Candidatus</em> Marithioploca) were studied along a bathymetric gradient from 79 to 935 m, including depths within and below the OMZ. Sediment samples were taken in both Huacho (11°S) and Callao (12°S) on the central coast of Peru using a van Veen grab sampler and multi-corers in October and November 2008. In addition to the biomass of <em>Candidatus</em> Marithioploca, the abundance, biomass, species richness, and structure of the macrobenthos were estimated on the surface as well as in the sediment column (i.e., 0–1, 1–2, 2–5, and 5–10 cm). The results indicate that, within the OMZ, there was a lower abundance and biomass of the macrobenthos but higher biomass of <em>Candidatus</em> Marithioploca. Within the OMZ, polychaetes were the dominant group, whereas below the OMZ, a diversity of taxonomic groups was recorded. The community structure reflects the gradient at depth as dissimilarity increases with depth. Diversity and evenness were lower within the OMZ and higher below the OMZ. The consistency of this pattern stands when compared to macrobenthos in the OMZ of other regions. The results of the present study highlight the importance of the OMZ as a modifying factor of benthic composition along depth gradients, particularly in diversity patterns.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrobenthic community structure and diversity across a bathymetric gradient within and below the oxygen minimum zone in central Peru\",\"authors\":\"Edson Gómez ,&nbsp;Leonardo Romero ,&nbsp;Luis Quipúzcoa ,&nbsp;Aldo S. Pacheco\",\"doi\":\"10.1016/j.dsr.2024.104341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxygen minimum zones (OMZs) are characteristic of highly productive upwelling ecosystems and create unique conditions for benthic organisms that can adapt to hypoxic conditions and high quantities of organic material. Community structure, macrobenthic organism diversity, and biomass of giant filamentous bacteria (<em>Candidatus</em> Marithioploca) were studied along a bathymetric gradient from 79 to 935 m, including depths within and below the OMZ. Sediment samples were taken in both Huacho (11°S) and Callao (12°S) on the central coast of Peru using a van Veen grab sampler and multi-corers in October and November 2008. In addition to the biomass of <em>Candidatus</em> Marithioploca, the abundance, biomass, species richness, and structure of the macrobenthos were estimated on the surface as well as in the sediment column (i.e., 0–1, 1–2, 2–5, and 5–10 cm). The results indicate that, within the OMZ, there was a lower abundance and biomass of the macrobenthos but higher biomass of <em>Candidatus</em> Marithioploca. Within the OMZ, polychaetes were the dominant group, whereas below the OMZ, a diversity of taxonomic groups was recorded. The community structure reflects the gradient at depth as dissimilarity increases with depth. Diversity and evenness were lower within the OMZ and higher below the OMZ. The consistency of this pattern stands when compared to macrobenthos in the OMZ of other regions. The results of the present study highlight the importance of the OMZ as a modifying factor of benthic composition along depth gradients, particularly in diversity patterns.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724001110\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001110","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

最小含氧区(OMZ)是高产上升流生态系统的特征,为能够适应缺氧条件和大量有机物质的底栖生物创造了独特的条件。我们沿 79 米至 935 米的水深梯度研究了群落结构、大型底栖生物多样性和巨丝状细菌(Candidatus Marithioploca)的生物量,包括 OMZ 内和 OMZ 下的深度。2008 年 10 月和 11 月,在秘鲁中部海岸的瓦乔(南纬 11°)和卡亚俄(南纬 12°),使用 van Veen 抓斗取样器和多芯取样器采集了沉积物样本。除海洋褐藻生物量外,还估算了表层和沉积柱(即 0-1、1-2、2-5 和 5-10 厘米)大型底栖生物的丰度、生物量、物种丰富度和结构。结果表明,在 OMZ 内,大型底栖生物的丰度和生物量较低,但 Candidatus Marithioploca 的生物量较高。在 OMZ 内,多毛类是主要的群落,而在 OMZ 以下,则记录到多种多样的分类群落。群落结构反映了深度上的梯度,因为随着深度的增加,差异也在增加。OMZ 内的多样性和均匀度较低,而 OMZ 以下则较高。与其他地区海洋管理区内的大型底栖生物相比,这种模式具有一致性。本研究的结果突出表明,OMZ 是沿深度梯度改变底栖生物组成的一个重要因素,特别是在多样性模式方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Macrobenthic community structure and diversity across a bathymetric gradient within and below the oxygen minimum zone in central Peru

Oxygen minimum zones (OMZs) are characteristic of highly productive upwelling ecosystems and create unique conditions for benthic organisms that can adapt to hypoxic conditions and high quantities of organic material. Community structure, macrobenthic organism diversity, and biomass of giant filamentous bacteria (Candidatus Marithioploca) were studied along a bathymetric gradient from 79 to 935 m, including depths within and below the OMZ. Sediment samples were taken in both Huacho (11°S) and Callao (12°S) on the central coast of Peru using a van Veen grab sampler and multi-corers in October and November 2008. In addition to the biomass of Candidatus Marithioploca, the abundance, biomass, species richness, and structure of the macrobenthos were estimated on the surface as well as in the sediment column (i.e., 0–1, 1–2, 2–5, and 5–10 cm). The results indicate that, within the OMZ, there was a lower abundance and biomass of the macrobenthos but higher biomass of Candidatus Marithioploca. Within the OMZ, polychaetes were the dominant group, whereas below the OMZ, a diversity of taxonomic groups was recorded. The community structure reflects the gradient at depth as dissimilarity increases with depth. Diversity and evenness were lower within the OMZ and higher below the OMZ. The consistency of this pattern stands when compared to macrobenthos in the OMZ of other regions. The results of the present study highlight the importance of the OMZ as a modifying factor of benthic composition along depth gradients, particularly in diversity patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
4.20%
发文量
144
审稿时长
18.3 weeks
期刊介绍: Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.
期刊最新文献
A review of deep-seawater samplers: Principles, applications, performance, and trends Editorial Board Cold-water octocoral interactions with microplastics under laboratory conditions Present and future distribution of the deep-sea habitat-forming sponge - Pheronema carpenteri (Thomson, 1869) in a changing ocean Advancing the frontier of fish geolocation into the ocean’s midwaters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1