微流体通道中人字形凹槽混合的在线拉曼成像

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-06-17 DOI:10.1039/d4lc00115j
Niels Klement, Elia Savino, Wesley R. Browne, Elisabeth Verpoorte
{"title":"微流体通道中人字形凹槽混合的在线拉曼成像","authors":"Niels Klement, Elia Savino, Wesley R. Browne, Elisabeth Verpoorte","doi":"10.1039/d4lc00115j","DOIUrl":null,"url":null,"abstract":"The control over fluid flow achievable in microfluidic devices creates opportunities for applications in many fields. In simple microchannels flow is purely laminar when one solvent is used, and hence, achieving reliable mixing is an important design consideration. Integration of structures, such as grooves, into the channels to act as static mixers is a commonly used approach. The mixing induced by these structures can be validated by determining concentration profiles in microfluidic channels following convergence of solvent streams from separate inlets. Spatially resolved characterisation is therefore necessary and requires in-line analysis methods. Here we report a line-focused illumination approach to provide operando, spatially resolved Raman spectra across the width of channels in the analysis of single- and multi-phase liquid systems and chemical reactions. A scientific complementary metal oxide semiconductor (sCMOS) sensor is used to overcome smearing encountered during spectral readout of images with CCD sensors. Isotopically labelled probes, in otherwise identical flow streams, show that z-confocality limits the spatial resolution and certainty as to the extent of mixing that can be achieved. These limitations are overcome using fast chemical reactions between reagents entering a microchannel in separate solvent streams. We show here that the progression of a chemical reaction, for which only the product is observable, is a powerful approach to determine the extent of mixing in a microchannel. Specifically resonance enhancement of Raman scattering from a product formed allows for determination of the true efficiency of mixing over the length and width of microchannels. Raman spectral images obtained by line-focused illumination show onset of mixing by observing the product of reagents entering from the separate inlets. Mixing is initially off-centre and immediately before the apex of the first groove of the static mixer, and then evolves along the entire width of the channel after a full cycle of grooves.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-line Raman imaging of mixing by herringbone grooves in microfluidic channels\",\"authors\":\"Niels Klement, Elia Savino, Wesley R. Browne, Elisabeth Verpoorte\",\"doi\":\"10.1039/d4lc00115j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control over fluid flow achievable in microfluidic devices creates opportunities for applications in many fields. In simple microchannels flow is purely laminar when one solvent is used, and hence, achieving reliable mixing is an important design consideration. Integration of structures, such as grooves, into the channels to act as static mixers is a commonly used approach. The mixing induced by these structures can be validated by determining concentration profiles in microfluidic channels following convergence of solvent streams from separate inlets. Spatially resolved characterisation is therefore necessary and requires in-line analysis methods. Here we report a line-focused illumination approach to provide operando, spatially resolved Raman spectra across the width of channels in the analysis of single- and multi-phase liquid systems and chemical reactions. A scientific complementary metal oxide semiconductor (sCMOS) sensor is used to overcome smearing encountered during spectral readout of images with CCD sensors. Isotopically labelled probes, in otherwise identical flow streams, show that z-confocality limits the spatial resolution and certainty as to the extent of mixing that can be achieved. These limitations are overcome using fast chemical reactions between reagents entering a microchannel in separate solvent streams. We show here that the progression of a chemical reaction, for which only the product is observable, is a powerful approach to determine the extent of mixing in a microchannel. Specifically resonance enhancement of Raman scattering from a product formed allows for determination of the true efficiency of mixing over the length and width of microchannels. Raman spectral images obtained by line-focused illumination show onset of mixing by observing the product of reagents entering from the separate inlets. Mixing is initially off-centre and immediately before the apex of the first groove of the static mixer, and then evolves along the entire width of the channel after a full cycle of grooves.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00115j\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00115j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微流控装置可实现对流体流动的控制,这为许多领域的应用创造了机会。在简单的微通道中,当使用一种溶剂时,流动是纯层流的,因此,实现可靠的混合是一个重要的设计考虑因素。将凹槽等结构集成到通道中作为静态混合器是一种常用的方法。在来自不同入口的溶剂流汇合后,通过确定微流控通道中的浓度分布,可以验证这些结构所引起的混合效果。因此,空间分辨表征是必要的,并且需要在线分析方法。在此,我们报告了一种线聚焦照明方法,可在分析单相和多相液体系统及化学反应时,在整个通道宽度范围内提供可操作的空间分辨拉曼光谱。利用科学互补金属氧化物半导体(sCMOS)传感器克服了使用 CCD 传感器读取光谱图像时遇到的涂抹现象。在完全相同的液流中进行同位素标记探针的结果表明,z-同位性限制了可实现的空间分辨率和混合程度的确定性。利用试剂之间的快速化学反应,可以克服这些限制。我们在此表明,化学反应的进展(只能观察到产物)是确定微通道中混合程度的有效方法。具体来说,从生成物中产生的拉曼散射共振增强可以确定微通道长度和宽度上的真实混合效率。通过线聚焦照明获得的拉曼光谱图像可以通过观察从不同入口进入的试剂的产物来显示混合的开始。混合最初偏离中心,紧靠静态混合器第一个凹槽的顶点之前,然后在凹槽循环一圈后沿着通道的整个宽度发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-line Raman imaging of mixing by herringbone grooves in microfluidic channels
The control over fluid flow achievable in microfluidic devices creates opportunities for applications in many fields. In simple microchannels flow is purely laminar when one solvent is used, and hence, achieving reliable mixing is an important design consideration. Integration of structures, such as grooves, into the channels to act as static mixers is a commonly used approach. The mixing induced by these structures can be validated by determining concentration profiles in microfluidic channels following convergence of solvent streams from separate inlets. Spatially resolved characterisation is therefore necessary and requires in-line analysis methods. Here we report a line-focused illumination approach to provide operando, spatially resolved Raman spectra across the width of channels in the analysis of single- and multi-phase liquid systems and chemical reactions. A scientific complementary metal oxide semiconductor (sCMOS) sensor is used to overcome smearing encountered during spectral readout of images with CCD sensors. Isotopically labelled probes, in otherwise identical flow streams, show that z-confocality limits the spatial resolution and certainty as to the extent of mixing that can be achieved. These limitations are overcome using fast chemical reactions between reagents entering a microchannel in separate solvent streams. We show here that the progression of a chemical reaction, for which only the product is observable, is a powerful approach to determine the extent of mixing in a microchannel. Specifically resonance enhancement of Raman scattering from a product formed allows for determination of the true efficiency of mixing over the length and width of microchannels. Raman spectral images obtained by line-focused illumination show onset of mixing by observing the product of reagents entering from the separate inlets. Mixing is initially off-centre and immediately before the apex of the first groove of the static mixer, and then evolves along the entire width of the channel after a full cycle of grooves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
In vitro vascularized liver tumor model based on a microfluidic inverse opal scaffold for immune cell recruitment investigation. Reconstitution of human tissue barrier function for precision and personalized medicine. Two-photon microscopy of acoustofluidic trapping for highly sensitive cell analysis. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy. Early detection of hypo/hyperglycemia using microneedles electrode array-based biosensor for glucose ultrasensitive monitoring in interstitial fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1