Željka Lončarić, Carina Lackmann, Dora Bjedov, Antonio Šimić, Sandra Ečimović, Thomas-Benjamin Seiler, Henner Hollert, Mirna Velki
{"title":"商业杀虫剂制剂对蚯蚓生物标志物和繁殖成功率的慢性影响","authors":"Željka Lončarić, Carina Lackmann, Dora Bjedov, Antonio Šimić, Sandra Ečimović, Thomas-Benjamin Seiler, Henner Hollert, Mirna Velki","doi":"10.1186/s12302-024-00940-7","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical pollution resulting from pesticide usage has been a continuous issue since the 1960s, despite comprehensive European Union legislation designed to safeguard human health and the environment from the adverse effects of pesticides. While regulatory risk assessments primarily focus on the active ingredients, recent research indicates ecotoxicological impacts of commercial preparations on non-target organisms, particularly within the soil ecosystem where key species such as earthworms play a vital role in maintaining soil quality and fertility. Therefore, the aim of this study was the assessment of the long-term effects of the following respective commercial preparations: the insecticides Sumialfa (esfenvalerate) and Calypso (thiacloprid), as well as the herbicides Frontier (dimethenamid-<i>p</i>) and Filon (prosulfocarb) on the earthworm <i>Eisenia andrei</i> in standardized soil during long-term exposures of 7, 14, and 28 days. To study the possible effects on different levels of biological organization, enzymatic biomarkers: acetylcholinesterase (AChE), carboxylesterase (CES) glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx); non-enzymatic biomarkers: multixenobiotic resistance activity (MXR), levels of glutathione (GSH), and reactive oxygen species (ROS) as well as reproductive success were investigated. While Calypso appeared to be the least toxic substance, all pesticides showed significant effect on multiobiomarker response in <i>E. fetida</i>. That being said, the response of MXR activity was significantly altered by all tested pesticides indicating MXR being the most sensitive endpoint of the present research. Recovery of MXR was observed after 28 days, however, only in case of exposure to Filon, while the recovery of CAT activity was recorded after 28 days as well, subsequent to Sumialfa exposure. Reproductive success was negatively impacted regarding the Frontier and Sumialfa exposure at the highest concentration (100 mg/kg) reflected in reduced number of cocoons, while only the exposure to Frontier (100 mg/kg) reduced the number of juveniles. Based on the results, it is important to include commercial pesticide formulations in pesticide risk assessments. The toxicity classifications of the studied pesticides suggest the potential detrimental consequences to the key soil species in terrestrial ecosystems at various concentrations. Future studies should include other soil species as well as investigation of higher levels of biological organization, i.e., behavioral endpoints, to determine the potential risks to terrestrial ecosystems.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"36 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00940-7","citationCount":"0","resultStr":"{\"title\":\"Chronic effects of commercial pesticide preparations on biomarkers and reproductive success in earthworm Eisenia andrei\",\"authors\":\"Željka Lončarić, Carina Lackmann, Dora Bjedov, Antonio Šimić, Sandra Ečimović, Thomas-Benjamin Seiler, Henner Hollert, Mirna Velki\",\"doi\":\"10.1186/s12302-024-00940-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical pollution resulting from pesticide usage has been a continuous issue since the 1960s, despite comprehensive European Union legislation designed to safeguard human health and the environment from the adverse effects of pesticides. While regulatory risk assessments primarily focus on the active ingredients, recent research indicates ecotoxicological impacts of commercial preparations on non-target organisms, particularly within the soil ecosystem where key species such as earthworms play a vital role in maintaining soil quality and fertility. Therefore, the aim of this study was the assessment of the long-term effects of the following respective commercial preparations: the insecticides Sumialfa (esfenvalerate) and Calypso (thiacloprid), as well as the herbicides Frontier (dimethenamid-<i>p</i>) and Filon (prosulfocarb) on the earthworm <i>Eisenia andrei</i> in standardized soil during long-term exposures of 7, 14, and 28 days. To study the possible effects on different levels of biological organization, enzymatic biomarkers: acetylcholinesterase (AChE), carboxylesterase (CES) glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx); non-enzymatic biomarkers: multixenobiotic resistance activity (MXR), levels of glutathione (GSH), and reactive oxygen species (ROS) as well as reproductive success were investigated. While Calypso appeared to be the least toxic substance, all pesticides showed significant effect on multiobiomarker response in <i>E. fetida</i>. That being said, the response of MXR activity was significantly altered by all tested pesticides indicating MXR being the most sensitive endpoint of the present research. Recovery of MXR was observed after 28 days, however, only in case of exposure to Filon, while the recovery of CAT activity was recorded after 28 days as well, subsequent to Sumialfa exposure. Reproductive success was negatively impacted regarding the Frontier and Sumialfa exposure at the highest concentration (100 mg/kg) reflected in reduced number of cocoons, while only the exposure to Frontier (100 mg/kg) reduced the number of juveniles. Based on the results, it is important to include commercial pesticide formulations in pesticide risk assessments. The toxicity classifications of the studied pesticides suggest the potential detrimental consequences to the key soil species in terrestrial ecosystems at various concentrations. Future studies should include other soil species as well as investigation of higher levels of biological organization, i.e., behavioral endpoints, to determine the potential risks to terrestrial ecosystems.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00940-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-024-00940-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-00940-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chronic effects of commercial pesticide preparations on biomarkers and reproductive success in earthworm Eisenia andrei
Chemical pollution resulting from pesticide usage has been a continuous issue since the 1960s, despite comprehensive European Union legislation designed to safeguard human health and the environment from the adverse effects of pesticides. While regulatory risk assessments primarily focus on the active ingredients, recent research indicates ecotoxicological impacts of commercial preparations on non-target organisms, particularly within the soil ecosystem where key species such as earthworms play a vital role in maintaining soil quality and fertility. Therefore, the aim of this study was the assessment of the long-term effects of the following respective commercial preparations: the insecticides Sumialfa (esfenvalerate) and Calypso (thiacloprid), as well as the herbicides Frontier (dimethenamid-p) and Filon (prosulfocarb) on the earthworm Eisenia andrei in standardized soil during long-term exposures of 7, 14, and 28 days. To study the possible effects on different levels of biological organization, enzymatic biomarkers: acetylcholinesterase (AChE), carboxylesterase (CES) glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx); non-enzymatic biomarkers: multixenobiotic resistance activity (MXR), levels of glutathione (GSH), and reactive oxygen species (ROS) as well as reproductive success were investigated. While Calypso appeared to be the least toxic substance, all pesticides showed significant effect on multiobiomarker response in E. fetida. That being said, the response of MXR activity was significantly altered by all tested pesticides indicating MXR being the most sensitive endpoint of the present research. Recovery of MXR was observed after 28 days, however, only in case of exposure to Filon, while the recovery of CAT activity was recorded after 28 days as well, subsequent to Sumialfa exposure. Reproductive success was negatively impacted regarding the Frontier and Sumialfa exposure at the highest concentration (100 mg/kg) reflected in reduced number of cocoons, while only the exposure to Frontier (100 mg/kg) reduced the number of juveniles. Based on the results, it is important to include commercial pesticide formulations in pesticide risk assessments. The toxicity classifications of the studied pesticides suggest the potential detrimental consequences to the key soil species in terrestrial ecosystems at various concentrations. Future studies should include other soil species as well as investigation of higher levels of biological organization, i.e., behavioral endpoints, to determine the potential risks to terrestrial ecosystems.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.