恢复胺共轭 2-丙酸-3-甲基马来酸酐连接体的 pH 反应性

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC Organic Chemistry Frontiers Pub Date : 2024-06-18 DOI:10.1039/D4QO01077A
Alina G. Heck and Lutz Nuhn
{"title":"恢复胺共轭 2-丙酸-3-甲基马来酸酐连接体的 pH 反应性","authors":"Alina G. Heck and Lutz Nuhn","doi":"10.1039/D4QO01077A","DOIUrl":null,"url":null,"abstract":"<p >The controlled pH-reversible conjugation of amine-functionalized molecules to nano-sized carrier systems is a promising achievement to enhance the efficacy of small molecular drugs at the target site. Various pH-responsive structures, such as ketals or hydrazones are accessible for drug delivery but suffer from high pH-gradients and elaborative modifications. The latter often further affects the specific activity of the released drugs. In this study, we establish the synthesis of a highly pH-sensitive bifunctional linker based on 2-propionic-3-methylmaleic anhydride. The underlying chemical structure enables the pH-reversible conjugation of different amines, although the attachment of primary amines competes with the formation of a pH-resistant imide structure. Remarkably, by analysis of the pH-reversible amidation profile in different solvents, the ring-opened amide structures are generated with primary aliphatic amines in diethyl ether. The formed conjugates rapidly phase separate from the reaction mixture and preserve the pH sensitivity of the linker system. Based on these findings, this manufacturing process is highly relevant in providing amine-conjugated 2-propionic-3-methylmaleic anhydride linkers and restoring their pH-responsiveness, particularly for primary amine-bearing drugs. This can pave their way for future applications, for instance, in nanomedicine.</p>","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restoring the pH-responsiveness for amine-conjugated 2-propionic-3-methylmaleic anhydride linkers†‡\",\"authors\":\"Alina G. Heck and Lutz Nuhn\",\"doi\":\"10.1039/D4QO01077A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controlled pH-reversible conjugation of amine-functionalized molecules to nano-sized carrier systems is a promising achievement to enhance the efficacy of small molecular drugs at the target site. Various pH-responsive structures, such as ketals or hydrazones are accessible for drug delivery but suffer from high pH-gradients and elaborative modifications. The latter often further affects the specific activity of the released drugs. In this study, we establish the synthesis of a highly pH-sensitive bifunctional linker based on 2-propionic-3-methylmaleic anhydride. The underlying chemical structure enables the pH-reversible conjugation of different amines, although the attachment of primary amines competes with the formation of a pH-resistant imide structure. Remarkably, by analysis of the pH-reversible amidation profile in different solvents, the ring-opened amide structures are generated with primary aliphatic amines in diethyl ether. The formed conjugates rapidly phase separate from the reaction mixture and preserve the pH sensitivity of the linker system. Based on these findings, this manufacturing process is highly relevant in providing amine-conjugated 2-propionic-3-methylmaleic anhydride linkers and restoring their pH-responsiveness, particularly for primary amine-bearing drugs. This can pave their way for future applications, for instance, in nanomedicine.</p>\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qo/d4qo01077a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qo/d4qo01077a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

将具有胺功能的分子与纳米级载体系统进行受控的 pH 值可逆共轭,是提高小分子药物在靶点疗效的一项很有前景的成就。各种 pH 响应结构,如酮类或酰肼类化合物,都可用于给药,但都存在 pH 梯度高和需要精心修饰的问题。后者往往会进一步影响释放药物的特定活性。在本研究中,我们以 2-丙酸-3-甲基马来酸酐为基础,合成了一种对 pH 值高度敏感的双功能连接体。尽管伯胺的附着会与耐 pH 值的亚胺结构的形成产生竞争,但其基本化学结构能够实现不同胺类的 pH 值可逆连接。值得注意的是,通过分析在不同溶剂中的 pH 值可逆酰胺化曲线,可以发现在二乙醚中与伯氨基脂肪族胺生成了开环酰胺结构。形成的共轭物能迅速从反应混合物中相分离,并保持连接体系统对 pH 值的敏感性。基于这些发现,该生产工艺在提供胺共轭 2-丙酸-3-甲基马来酸酐连接体和恢复其 pH 敏感性方面具有重要意义,特别是对于伯胺药物。这将为它们今后在纳米医学等领域的应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoring the pH-responsiveness for amine-conjugated 2-propionic-3-methylmaleic anhydride linkers†‡

The controlled pH-reversible conjugation of amine-functionalized molecules to nano-sized carrier systems is a promising achievement to enhance the efficacy of small molecular drugs at the target site. Various pH-responsive structures, such as ketals or hydrazones are accessible for drug delivery but suffer from high pH-gradients and elaborative modifications. The latter often further affects the specific activity of the released drugs. In this study, we establish the synthesis of a highly pH-sensitive bifunctional linker based on 2-propionic-3-methylmaleic anhydride. The underlying chemical structure enables the pH-reversible conjugation of different amines, although the attachment of primary amines competes with the formation of a pH-resistant imide structure. Remarkably, by analysis of the pH-reversible amidation profile in different solvents, the ring-opened amide structures are generated with primary aliphatic amines in diethyl ether. The formed conjugates rapidly phase separate from the reaction mixture and preserve the pH sensitivity of the linker system. Based on these findings, this manufacturing process is highly relevant in providing amine-conjugated 2-propionic-3-methylmaleic anhydride linkers and restoring their pH-responsiveness, particularly for primary amine-bearing drugs. This can pave their way for future applications, for instance, in nanomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
期刊最新文献
Mechanistic Insights into the Gold(I)-Catalyzed [3,3]-Sigmatropic Rearrangement of Sulfoniums for the Formation of Chiral 1,4-Dicarbonyls or Formal α-Arylation of Carbonyl Compounds Recent Developments in the Ring-Opening Transformations of gem-Difluorocyclopropanes A supramolecular dimer strategy for enhancing the selective generation of sulfides and sulfoxides by visible-light induced photoredox thiol-ene cross-coupling reactions of anthraquinone Shining light on sulfonium salts and sulfur ylides: recent advances in alkylation under photoredox catalysis Deoxygenative 1,3-Carbophosphination of Allylic Alcohols enabled by Manganese Pincer Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1