微波单向宽带透射斗篷的实验实现

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-06-18 DOI:10.1002/lpor.202400611
Ruichen Li, Min Huang, Yijun Zou, Bin Zheng, Caofei Luo, Lian Shen, Hui Jin, Hongsheng Chen
{"title":"微波单向宽带透射斗篷的实验实现","authors":"Ruichen Li, Min Huang, Yijun Zou, Bin Zheng, Caofei Luo, Lian Shen, Hui Jin, Hongsheng Chen","doi":"10.1002/lpor.202400611","DOIUrl":null,"url":null,"abstract":"Hiding an isolated object in free space using a transmissive invisibility cloak has become a significant research area, propelled by advancements in metamaterials and transformation optics over the past decade. Despite the availability of various simplified methods for implementing transmissive cloaks, issues such as impedance mismatches and narrow working bandwidths often arise, posing challenges. Achieving a broadband transmissive cloak in free space has proven to be particularly arduous. This study presents a near-perfect one-directional broadband transmissive cloak constructed from multilayer metasurfaces of arbitrary shapes, showcasing superior performance across a broadband frequency range. The phase distribution of the metasurfaces and the efficacy of the transmissive cloak are assessed using the generalized Snell's law. An experimental near-perfect broadband transmissive cloak is successfully demonstrated to operate within the frequency range of 8.5 to 11.2 GHz. This study contributes to reducing the density and mass of cloaks, thereby facilitating the expansion of cloaking capabilities in various directions and across different frequency bands.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Realization of a One-Directional Broadband Transmissive Cloak in Microwaves\",\"authors\":\"Ruichen Li, Min Huang, Yijun Zou, Bin Zheng, Caofei Luo, Lian Shen, Hui Jin, Hongsheng Chen\",\"doi\":\"10.1002/lpor.202400611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hiding an isolated object in free space using a transmissive invisibility cloak has become a significant research area, propelled by advancements in metamaterials and transformation optics over the past decade. Despite the availability of various simplified methods for implementing transmissive cloaks, issues such as impedance mismatches and narrow working bandwidths often arise, posing challenges. Achieving a broadband transmissive cloak in free space has proven to be particularly arduous. This study presents a near-perfect one-directional broadband transmissive cloak constructed from multilayer metasurfaces of arbitrary shapes, showcasing superior performance across a broadband frequency range. The phase distribution of the metasurfaces and the efficacy of the transmissive cloak are assessed using the generalized Snell's law. An experimental near-perfect broadband transmissive cloak is successfully demonstrated to operate within the frequency range of 8.5 to 11.2 GHz. This study contributes to reducing the density and mass of cloaks, thereby facilitating the expansion of cloaking capabilities in various directions and across different frequency bands.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202400611\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400611","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用透射隐形斗篷在自由空间隐藏孤立物体已成为一个重要的研究领域,过去十年间超材料和变换光学的进步推动了这一研究。尽管有各种简化方法来实现透射隐形,但阻抗失配和工作带宽狭窄等问题经常出现,给研究带来了挑战。事实证明,在自由空间实现宽带透射隐形尤其困难。本研究提出了一种近乎完美的单向宽带透射斗篷,由任意形状的多层元表面构建而成,在宽带频率范围内展示了卓越的性能。利用广义斯涅尔定律评估了元表面的相位分布和透射斗篷的功效。实验成功证明,近乎完美的宽带透射隐形衣可在 8.5 至 11.2 GHz 的频率范围内工作。这项研究有助于降低隐形衣的密度和质量,从而促进隐形能力在不同方向和不同频段的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Realization of a One-Directional Broadband Transmissive Cloak in Microwaves
Hiding an isolated object in free space using a transmissive invisibility cloak has become a significant research area, propelled by advancements in metamaterials and transformation optics over the past decade. Despite the availability of various simplified methods for implementing transmissive cloaks, issues such as impedance mismatches and narrow working bandwidths often arise, posing challenges. Achieving a broadband transmissive cloak in free space has proven to be particularly arduous. This study presents a near-perfect one-directional broadband transmissive cloak constructed from multilayer metasurfaces of arbitrary shapes, showcasing superior performance across a broadband frequency range. The phase distribution of the metasurfaces and the efficacy of the transmissive cloak are assessed using the generalized Snell's law. An experimental near-perfect broadband transmissive cloak is successfully demonstrated to operate within the frequency range of 8.5 to 11.2 GHz. This study contributes to reducing the density and mass of cloaks, thereby facilitating the expansion of cloaking capabilities in various directions and across different frequency bands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Efficient Rational Approximation of Optical Response Functions with the AAA Algorithm Topologically Protected Single Edge Mode Lasing in Photonic Crystal Su–Schrieffer–Heeger Lattice with Directional Loss Control All-Dielectric Meta-Waveguides for Flexible Polarization Control of Guided Light Suppressing Side-Scattering on Laser-Written Bragg Gratings for Back-Reflection Engineering in Fibers High Resolution Nanostructuring of Perovskites With Tunable Morphologies by Ultrafast Laser Direct Writing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1