最小热点温度模式下涡扇发动机性能寻求控制研究

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2024-06-17 DOI:10.1515/tjj-2024-0022
Yabing Liu, Hongwei Zhang, Bei Ma, Liangliang Li, Chenxu Hu, Qiangang Zheng, Haibo Zhang
{"title":"最小热点温度模式下涡扇发动机性能寻求控制研究","authors":"Yabing Liu, Hongwei Zhang, Bei Ma, Liangliang Li, Chenxu Hu, Qiangang Zheng, Haibo Zhang","doi":"10.1515/tjj-2024-0022","DOIUrl":null,"url":null,"abstract":"Abstract The uneven temperature distribution at the combustion chamber outlet seriously affects the working life of the engine. In order to reduce the heat spot temperature at the combustion chamber outlet, a performance optimization control method of the engine minimum heat spot temperature pattern is proposed. Firstly, based on CFD method, the temperature distribution characteristics of combustion chamber outlet under different working conditions were obtained, and a component-level model of turbofan engine was established to characterize the heat spot temperature at combustion chamber outlet. Secondly, the high precision and high real-time engine on-board model is established by deep neural network. Compared with the component-level model, the average relative error of each performance parameter is less than 0.3 %, and the real-time performance is improved by 12 times. Finally, based on the feasible sequential quadratic programming algorithm, the performance optimization control of the minimum hot spot temperature model in the typical flight envelope is simulated and verified. The simulation results show that under the condition of ensuring the safe and stable operation of the engine and constant thrust, the heat spot temperature at the combustion chamber outlet decreases by 21 K maximum. Compared with the conventional minimum turbine front temperature optimization mode, the minimum heat spot temperature mode significantly reduces the heat spot temperature at the combustion chamber outlet.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on performance seeking control of turbofan engine in minimum hot spot temperature mode\",\"authors\":\"Yabing Liu, Hongwei Zhang, Bei Ma, Liangliang Li, Chenxu Hu, Qiangang Zheng, Haibo Zhang\",\"doi\":\"10.1515/tjj-2024-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The uneven temperature distribution at the combustion chamber outlet seriously affects the working life of the engine. In order to reduce the heat spot temperature at the combustion chamber outlet, a performance optimization control method of the engine minimum heat spot temperature pattern is proposed. Firstly, based on CFD method, the temperature distribution characteristics of combustion chamber outlet under different working conditions were obtained, and a component-level model of turbofan engine was established to characterize the heat spot temperature at combustion chamber outlet. Secondly, the high precision and high real-time engine on-board model is established by deep neural network. Compared with the component-level model, the average relative error of each performance parameter is less than 0.3 %, and the real-time performance is improved by 12 times. Finally, based on the feasible sequential quadratic programming algorithm, the performance optimization control of the minimum hot spot temperature model in the typical flight envelope is simulated and verified. The simulation results show that under the condition of ensuring the safe and stable operation of the engine and constant thrust, the heat spot temperature at the combustion chamber outlet decreases by 21 K maximum. Compared with the conventional minimum turbine front temperature optimization mode, the minimum heat spot temperature mode significantly reduces the heat spot temperature at the combustion chamber outlet.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2024-0022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2024-0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 燃烧室出口温度分布不均严重影响发动机的工作寿命。为了降低燃烧室出口处的热斑温度,提出了一种发动机最小热斑温度模式的性能优化控制方法。首先,基于 CFD 方法,获得了不同工况下燃烧室出口温度分布特征,建立了涡扇发动机部件级模型,表征了燃烧室出口热斑温度。其次,利用深度神经网络建立了高精度、高实时性的发动机机载模型。与组件级模型相比,各性能参数的平均相对误差小于 0.3%,实时性提高了 12 倍。最后,基于可行的顺序二次编程算法,对典型飞行包线内最小热点温度模型的性能优化控制进行了仿真验证。仿真结果表明,在保证发动机安全稳定运行和推力恒定的条件下,燃烧室出口热斑温度最大下降 21 K。与传统的最小涡轮前沿温度优化模式相比,最小热斑温度模式显著降低了燃烧室出口处的热斑温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on performance seeking control of turbofan engine in minimum hot spot temperature mode
Abstract The uneven temperature distribution at the combustion chamber outlet seriously affects the working life of the engine. In order to reduce the heat spot temperature at the combustion chamber outlet, a performance optimization control method of the engine minimum heat spot temperature pattern is proposed. Firstly, based on CFD method, the temperature distribution characteristics of combustion chamber outlet under different working conditions were obtained, and a component-level model of turbofan engine was established to characterize the heat spot temperature at combustion chamber outlet. Secondly, the high precision and high real-time engine on-board model is established by deep neural network. Compared with the component-level model, the average relative error of each performance parameter is less than 0.3 %, and the real-time performance is improved by 12 times. Finally, based on the feasible sequential quadratic programming algorithm, the performance optimization control of the minimum hot spot temperature model in the typical flight envelope is simulated and verified. The simulation results show that under the condition of ensuring the safe and stable operation of the engine and constant thrust, the heat spot temperature at the combustion chamber outlet decreases by 21 K maximum. Compared with the conventional minimum turbine front temperature optimization mode, the minimum heat spot temperature mode significantly reduces the heat spot temperature at the combustion chamber outlet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
Effect of inlet diameter on the flow structure and performance for aluminum-based water-jet engine Multi-objective optimization of the aerodynamic performance of butterfly-shaped film cooling holes in rocket thrust chamber Simple model of turbine-based combined cycle propulsion system and smooth mode transition Experimental study on flow field and combustion characteristics of V-gutter and integrated flameholders Research on performance seeking control of turbofan engine in minimum hot spot temperature mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1