Mohammad Ghorbanian Far, Mohammad Najafian Ashrafi, Hooman Shaabani Asrami, Yaser Amiri Moghadam, Ehsan Bari, Peter Niemz, Reza Hosseinpourpia, Javier Ribera
{"title":"不同气候条件下生长的不同榉木树种的物理和机械特性:综述","authors":"Mohammad Ghorbanian Far, Mohammad Najafian Ashrafi, Hooman Shaabani Asrami, Yaser Amiri Moghadam, Ehsan Bari, Peter Niemz, Reza Hosseinpourpia, Javier Ribera","doi":"10.1515/hf-2023-0117","DOIUrl":null,"url":null,"abstract":"Abstract Beech wood, renowned for its diverse applications spanning construction, flooring, furniture, veneer, and plywood, holds a paramount position among industrial wood species. Nevertheless, the myriad of beech species worldwide, coupled with the dynamic impact of climate change, have produced structural variations within beech trees. Extensive research has scrutinized the physical and mechanical attributes of beech wood species across the globe. Findings reveal distinguishable mechanical strength, yet increased density leads to notable rates of shrinkage and swelling, somewhat constraining its utility in select domains. Identifying research gaps can create new efforts aimed at exploiting the potential of these wood resources. This paper outperforms a mere exploration of beech wood properties over the past two decades; it delves into the ramifications of climatic fluctuations, temperature shifts, wind dynamics, and soil composition. Given the lack of a comprehensive compendium documenting the full range of physical, mechanical, and microscopic attributes of the Fagus genus, this paper aims to compile information that integrates this multifaceted information.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical and mechanical properties of different beech wood species grown at various climate conditions: a review\",\"authors\":\"Mohammad Ghorbanian Far, Mohammad Najafian Ashrafi, Hooman Shaabani Asrami, Yaser Amiri Moghadam, Ehsan Bari, Peter Niemz, Reza Hosseinpourpia, Javier Ribera\",\"doi\":\"10.1515/hf-2023-0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Beech wood, renowned for its diverse applications spanning construction, flooring, furniture, veneer, and plywood, holds a paramount position among industrial wood species. Nevertheless, the myriad of beech species worldwide, coupled with the dynamic impact of climate change, have produced structural variations within beech trees. Extensive research has scrutinized the physical and mechanical attributes of beech wood species across the globe. Findings reveal distinguishable mechanical strength, yet increased density leads to notable rates of shrinkage and swelling, somewhat constraining its utility in select domains. Identifying research gaps can create new efforts aimed at exploiting the potential of these wood resources. This paper outperforms a mere exploration of beech wood properties over the past two decades; it delves into the ramifications of climatic fluctuations, temperature shifts, wind dynamics, and soil composition. Given the lack of a comprehensive compendium documenting the full range of physical, mechanical, and microscopic attributes of the Fagus genus, this paper aims to compile information that integrates this multifaceted information.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0117\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0117","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Physical and mechanical properties of different beech wood species grown at various climate conditions: a review
Abstract Beech wood, renowned for its diverse applications spanning construction, flooring, furniture, veneer, and plywood, holds a paramount position among industrial wood species. Nevertheless, the myriad of beech species worldwide, coupled with the dynamic impact of climate change, have produced structural variations within beech trees. Extensive research has scrutinized the physical and mechanical attributes of beech wood species across the globe. Findings reveal distinguishable mechanical strength, yet increased density leads to notable rates of shrinkage and swelling, somewhat constraining its utility in select domains. Identifying research gaps can create new efforts aimed at exploiting the potential of these wood resources. This paper outperforms a mere exploration of beech wood properties over the past two decades; it delves into the ramifications of climatic fluctuations, temperature shifts, wind dynamics, and soil composition. Given the lack of a comprehensive compendium documenting the full range of physical, mechanical, and microscopic attributes of the Fagus genus, this paper aims to compile information that integrates this multifaceted information.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.