带连续侧向硅胶约束的夹层玻璃梁和悬臂的设计与稳定性

Richard Green, Chiara Bedon, L. Galuppi, Andrew Crosby
{"title":"带连续侧向硅胶约束的夹层玻璃梁和悬臂的设计与稳定性","authors":"Richard Green, Chiara Bedon, L. Galuppi, Andrew Crosby","doi":"10.47982/cgc.9.599","DOIUrl":null,"url":null,"abstract":"The stability of monolithic glass beams is reasonably well defined; as an elastic material it behaves in a similar manner to other elastic materials such as steel, for which there are many equations of different forms which give similar results.   Special care is required for continuous restraint to the tension flange. Equations presented in Australian Standard AS1288 Glass in Buildings – Selection and Installation have been used successfully for many years for monolithic fins when used with the strength model of AS1288 but require a more comprehensive approach when using laminated fins and/or strength models that allow higher levels of stress. A review of equations for cantilevers results in a wider range of approaches with significant variance between the outcomes of various published steel and glass standards. AS1288 has been used as the default standard for stability of glass fins, however for cantilevers it appears to have a misprint which has existed for decades. This paper presents strategies for determining the moment capacity of beams and cantilevers made of laminated glass with continuous flexible buckling restraints, such as structural silicone, which have initial imperfections and a known design strength capacity. Where multiple wave lengths form, the warping stiffness may contribute and formulations for rectangles are presented. The accuracy and validity of the approach is also assessed by means of comparisons with the outcomes of Finite Element numerical analyses.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Stability of Laminated Glass Beams and Cantilevers with Continuous Lateral Silicone Restraint\",\"authors\":\"Richard Green, Chiara Bedon, L. Galuppi, Andrew Crosby\",\"doi\":\"10.47982/cgc.9.599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of monolithic glass beams is reasonably well defined; as an elastic material it behaves in a similar manner to other elastic materials such as steel, for which there are many equations of different forms which give similar results.   Special care is required for continuous restraint to the tension flange. Equations presented in Australian Standard AS1288 Glass in Buildings – Selection and Installation have been used successfully for many years for monolithic fins when used with the strength model of AS1288 but require a more comprehensive approach when using laminated fins and/or strength models that allow higher levels of stress. A review of equations for cantilevers results in a wider range of approaches with significant variance between the outcomes of various published steel and glass standards. AS1288 has been used as the default standard for stability of glass fins, however for cantilevers it appears to have a misprint which has existed for decades. This paper presents strategies for determining the moment capacity of beams and cantilevers made of laminated glass with continuous flexible buckling restraints, such as structural silicone, which have initial imperfections and a known design strength capacity. Where multiple wave lengths form, the warping stiffness may contribute and formulations for rectangles are presented. The accuracy and validity of the approach is also assessed by means of comparisons with the outcomes of Finite Element numerical analyses.\",\"PeriodicalId\":332145,\"journal\":{\"name\":\"Challenging Glass Conference Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Challenging Glass Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/cgc.9.599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenging Glass Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/cgc.9.599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整体玻璃梁的稳定性有相当明确的定义;作为一种弹性材料,它的行为方式与钢材等其他弹性材料类似。 需要特别注意对拉伸范围的持续约束。澳大利亚标准 AS1288《建筑玻璃--选择和安装》中提出的等式多年来一直被成功地用于单片翅片与 AS1288 强度模型的配合使用,但在使用夹层翅片和/或允许更高应力水平的强度模型时,需要采用更全面的方法。对悬臂计算公式的审查结果显示,采用的方法范围更广,各种已发布的钢材和玻璃标准的结果之间存在显著差异。AS1288 已被用作玻璃翅片稳定性的默认标准,但对于悬臂而言,该标准似乎存在几十年的错误。本文介绍了确定夹层玻璃梁和悬臂的弯矩承载能力的策略,夹层玻璃采用连续柔性屈曲约束,如结构硅胶,具有初始缺陷和已知的设计强度承载能力。在形成多个波长的情况下,翘曲刚度可能会有所影响,本文介绍了矩形的计算公式。此外,还通过与有限元数值分析结果的比较,对该方法的准确性和有效性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Stability of Laminated Glass Beams and Cantilevers with Continuous Lateral Silicone Restraint
The stability of monolithic glass beams is reasonably well defined; as an elastic material it behaves in a similar manner to other elastic materials such as steel, for which there are many equations of different forms which give similar results.   Special care is required for continuous restraint to the tension flange. Equations presented in Australian Standard AS1288 Glass in Buildings – Selection and Installation have been used successfully for many years for monolithic fins when used with the strength model of AS1288 but require a more comprehensive approach when using laminated fins and/or strength models that allow higher levels of stress. A review of equations for cantilevers results in a wider range of approaches with significant variance between the outcomes of various published steel and glass standards. AS1288 has been used as the default standard for stability of glass fins, however for cantilevers it appears to have a misprint which has existed for decades. This paper presents strategies for determining the moment capacity of beams and cantilevers made of laminated glass with continuous flexible buckling restraints, such as structural silicone, which have initial imperfections and a known design strength capacity. Where multiple wave lengths form, the warping stiffness may contribute and formulations for rectangles are presented. The accuracy and validity of the approach is also assessed by means of comparisons with the outcomes of Finite Element numerical analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress Distribution along the Structural Sealant Joint Length of a Cylindrically Curved Glazing Panel Restoring Hi-Tech Architecture Early-Detection of EVA Encapsulant Degradation in PV Modules Based on Vibration Frequency Analysis Panoramic Perfection: Unveiling Technical Insights from “The Henderson” in Hong Kong A Portable Technology for Measuring Haze Levels in Thick Laminated Glass Panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1