Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao
{"title":"面向有机发光二极管的纯有机室温磷光材料","authors":"Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao","doi":"10.1002/flm2.23","DOIUrl":null,"url":null,"abstract":"<p>Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 2","pages":"173-192"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.23","citationCount":"0","resultStr":"{\"title\":\"Purely organic room temperature phosphorescent materials toward organic light-emitting diodes\",\"authors\":\"Hui Li, Cheng Chen, Zongji Ye, Kai Feng, Jiani Huang, Gaozhan Xie, Ye Tao\",\"doi\":\"10.1002/flm2.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.</p>\",\"PeriodicalId\":100533,\"journal\":{\"name\":\"FlexMat\",\"volume\":\"1 2\",\"pages\":\"173-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.23\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlexMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/flm2.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purely organic room temperature phosphorescent materials toward organic light-emitting diodes
Purely organic room temperature phosphorescence (RTP) materials have shown broad application prospects in organic light-emitting diodes (OLEDs) due to their theoretical 100% exciton utilization, cost-effectiveness, and flexibility. In recent years, with the deepening of research, various luminescent mechanisms have been proposed, and RTP materials have made significant progress, which have been effectively applied to OLEDs. This article comprehensively reviews the research progress of RTP materials in OLEDs and introduces the development of a series of high-efficiency RTP materials from the perspective of molecular design strategies and photophysical properties. These conclusions draw a roadmap to address the inherent challenges in utilizing organic RTP materials to specifically advance the investigation of OLEDs.