运动式全球导航卫星系统对按时间和深度解析孟加拉国沿海沉降率的贡献

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers in Earth Science Pub Date : 2024-06-14 DOI:10.3389/feart.2024.1354686
M. Steckler, Md. Hasnat Jaman, C. Grall, S. Goodbred, Carol A. Wilson, B. Oryan
{"title":"运动式全球导航卫星系统对按时间和深度解析孟加拉国沿海沉降率的贡献","authors":"M. Steckler, Md. Hasnat Jaman, C. Grall, S. Goodbred, Carol A. Wilson, B. Oryan","doi":"10.3389/feart.2024.1354686","DOIUrl":null,"url":null,"abstract":"Coastal regions are vulnerable to rising seas, increasing storm magnitude, and decimation of ecologically-fragile areas. Deltas are particularly sensitive to the balance between sea-level rise, land subsidence and sedimentation that determine relative elevation. Bangladesh has been highlighted as being at risk from sea-level rise. Integrating measurements from different methods can approach a more complete understanding of factors controlling areally and temporally varying subsidence rates. To augment our compilation of rates from stratigraphic wells, historic buildings, vertical strainmeters, RSET-MH, and continuous Global Navigation Satellite System, we resurveyed 48 geodetic monuments in coastal Bangladesh ∼18 years after the monuments were installed. A later resurvey of 4 sites showed that some sites with higher subsidence may be unstable, but we consider the subsidence pattern of all the sites. Sites with rates <2 mm/yr overlie thin (≤35 m), sandy Holocene deposits located along interfluves between the main paleo-river valleys. As Holocene strata thicken seaward and become muddier, subsidence rates increase to 20–25 mm/y. Sites in incised valleys of the Ganges, Brahmaputra and Meghna Rivers, with Holocene sediments >100 m show subsidence rates of 20 ± 10 mm/y, with a slight seaward increase. Overall, subsidence rates increase with Holocene sediment thickness and the seaward shift from sandy to muddy sediments. Together with earlier measurements, we parse the different rates and mechanisms of subsidence. Earlier models show 2–3 mm/yr correspond to deep processes, such as isostasy. Within the shallow Holocene (<10 m), we estimate 5–8 mm/yr of subsidence from shallow, edaphic effects (tree roots, burrows, organic matter decomposition) and shallow (≤10 m) sediment consolidation on short timescales. Below this, we estimate 3–6 mm/yr from compaction of the upper Holocene strata, with 2–5 mm/yr occurring in deeper Holocene strata. Subsidence rates in areas of active sedimentation, such as rice fields and mangrove forests, are greater than buildings and structures with deep foundations. Subsidence on timescales >300 y, which do not include edaphic effects, are up to ∼5 mm/y. We note subsidence can be offset by active deltaic sedimentation, and does not necessarily indicate elevation loss. Collectively, the integration of these approaches allows us to begin quantifying the varied contributions to land subsidence from edaphic effects, Holocene sediment compaction, lithology, and time. Similar factors may contribute to the highly variable subsidence rates observed at other deltas worldwide.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of campaign GNSS toward parsing subsidence rates by time and depth in coastal Bangladesh\",\"authors\":\"M. Steckler, Md. Hasnat Jaman, C. Grall, S. Goodbred, Carol A. Wilson, B. Oryan\",\"doi\":\"10.3389/feart.2024.1354686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal regions are vulnerable to rising seas, increasing storm magnitude, and decimation of ecologically-fragile areas. Deltas are particularly sensitive to the balance between sea-level rise, land subsidence and sedimentation that determine relative elevation. Bangladesh has been highlighted as being at risk from sea-level rise. Integrating measurements from different methods can approach a more complete understanding of factors controlling areally and temporally varying subsidence rates. To augment our compilation of rates from stratigraphic wells, historic buildings, vertical strainmeters, RSET-MH, and continuous Global Navigation Satellite System, we resurveyed 48 geodetic monuments in coastal Bangladesh ∼18 years after the monuments were installed. A later resurvey of 4 sites showed that some sites with higher subsidence may be unstable, but we consider the subsidence pattern of all the sites. Sites with rates <2 mm/yr overlie thin (≤35 m), sandy Holocene deposits located along interfluves between the main paleo-river valleys. As Holocene strata thicken seaward and become muddier, subsidence rates increase to 20–25 mm/y. Sites in incised valleys of the Ganges, Brahmaputra and Meghna Rivers, with Holocene sediments >100 m show subsidence rates of 20 ± 10 mm/y, with a slight seaward increase. Overall, subsidence rates increase with Holocene sediment thickness and the seaward shift from sandy to muddy sediments. Together with earlier measurements, we parse the different rates and mechanisms of subsidence. Earlier models show 2–3 mm/yr correspond to deep processes, such as isostasy. Within the shallow Holocene (<10 m), we estimate 5–8 mm/yr of subsidence from shallow, edaphic effects (tree roots, burrows, organic matter decomposition) and shallow (≤10 m) sediment consolidation on short timescales. Below this, we estimate 3–6 mm/yr from compaction of the upper Holocene strata, with 2–5 mm/yr occurring in deeper Holocene strata. Subsidence rates in areas of active sedimentation, such as rice fields and mangrove forests, are greater than buildings and structures with deep foundations. Subsidence on timescales >300 y, which do not include edaphic effects, are up to ∼5 mm/y. We note subsidence can be offset by active deltaic sedimentation, and does not necessarily indicate elevation loss. Collectively, the integration of these approaches allows us to begin quantifying the varied contributions to land subsidence from edaphic effects, Holocene sediment compaction, lithology, and time. Similar factors may contribute to the highly variable subsidence rates observed at other deltas worldwide.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1354686\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1354686","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沿海地区容易受到海平面上升、风暴强度增加和生态脆弱地区减少的影响。三角洲对决定相对海拔高度的海平面上升、土地沉降和沉积之间的平衡尤为敏感。孟加拉国已受到海平面上升的威胁。整合不同方法的测量结果,可以更全面地了解控制不同地区和不同时间沉降率的因素。为了加强我们对地层井、历史建筑、垂直应变仪、RSET-MH 和连续全球导航卫星系统的速率的汇编,我们在孟加拉国沿海的 48 个大地测量纪念碑安装 18 年后重新进行了测量。后来对 4 个站点的重新勘测表明,一些沉降较高的站点可能不稳定,但我们考虑了所有站点的沉降模式。下沉率为 100 米的地点显示下沉率为 20 ± 10 毫米/年,并略微向海下沉。总体而言,下沉率随着全新世沉积厚度的增加以及从沙质沉积向泥质沉积的向海移动而增加。结合早期的测量结果,我们分析了不同的下沉速率和机制。早期的模型显示,2-3 毫米/年的下沉速度与等压等深沉过程相对应。在全新世浅层(300 y)内,不包括造山运动的影响,下沉速度可达 5 mm/y。我们注意到,沉降可能被活跃的三角洲沉积所抵消,并不一定表示海拔的下降。综合这些方法,我们可以开始量化环境效应、全新世沉积物压实、岩性和时间对陆地沉降的不同贡献。类似的因素也可能导致在全球其他三角洲观察到的差异巨大的沉降率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of campaign GNSS toward parsing subsidence rates by time and depth in coastal Bangladesh
Coastal regions are vulnerable to rising seas, increasing storm magnitude, and decimation of ecologically-fragile areas. Deltas are particularly sensitive to the balance between sea-level rise, land subsidence and sedimentation that determine relative elevation. Bangladesh has been highlighted as being at risk from sea-level rise. Integrating measurements from different methods can approach a more complete understanding of factors controlling areally and temporally varying subsidence rates. To augment our compilation of rates from stratigraphic wells, historic buildings, vertical strainmeters, RSET-MH, and continuous Global Navigation Satellite System, we resurveyed 48 geodetic monuments in coastal Bangladesh ∼18 years after the monuments were installed. A later resurvey of 4 sites showed that some sites with higher subsidence may be unstable, but we consider the subsidence pattern of all the sites. Sites with rates <2 mm/yr overlie thin (≤35 m), sandy Holocene deposits located along interfluves between the main paleo-river valleys. As Holocene strata thicken seaward and become muddier, subsidence rates increase to 20–25 mm/y. Sites in incised valleys of the Ganges, Brahmaputra and Meghna Rivers, with Holocene sediments >100 m show subsidence rates of 20 ± 10 mm/y, with a slight seaward increase. Overall, subsidence rates increase with Holocene sediment thickness and the seaward shift from sandy to muddy sediments. Together with earlier measurements, we parse the different rates and mechanisms of subsidence. Earlier models show 2–3 mm/yr correspond to deep processes, such as isostasy. Within the shallow Holocene (<10 m), we estimate 5–8 mm/yr of subsidence from shallow, edaphic effects (tree roots, burrows, organic matter decomposition) and shallow (≤10 m) sediment consolidation on short timescales. Below this, we estimate 3–6 mm/yr from compaction of the upper Holocene strata, with 2–5 mm/yr occurring in deeper Holocene strata. Subsidence rates in areas of active sedimentation, such as rice fields and mangrove forests, are greater than buildings and structures with deep foundations. Subsidence on timescales >300 y, which do not include edaphic effects, are up to ∼5 mm/y. We note subsidence can be offset by active deltaic sedimentation, and does not necessarily indicate elevation loss. Collectively, the integration of these approaches allows us to begin quantifying the varied contributions to land subsidence from edaphic effects, Holocene sediment compaction, lithology, and time. Similar factors may contribute to the highly variable subsidence rates observed at other deltas worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
期刊最新文献
Light-absorbing capacity of volcanic dust from Iceland and Chile Simulation and prediction of dynamic process of loess landslide and its impact damage to houses Uranium resources associated with phosphoric acid production and water desalination in Saudi Arabia Three-dimensional numerical simulation of factors affecting surface cracking in double-layer rock mass Organic matter enrichment model of Permian Capitanian-Changhsingian black shale in the intra-platform basin of Nanpanjiang basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1