{"title":"平均场博弈回溯问题的凸化数值法","authors":"Michael V. Klibanov, Jingzhi Li, Zhipeng Yang","doi":"10.1007/s00245-024-10152-3","DOIUrl":null,"url":null,"abstract":"<div><p>The convexification numerical method with the rigorously established global convergence property is constructed for a problem for the Mean Field Games System of the second order. This is the problem of the retrospective analysis of a game of infinitely many rational players. In addition to traditional initial and terminal conditions, one extra terminal condition is assumed to be known. Carleman estimates and a Carleman Weight Function play the key role. Numerical experiments demonstrate a good performance for complicated functions. Various versions of the convexification have been actively used by this research team for a number of years to numerically solve coefficient inverse problems.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexification Numerical Method for the Retrospective Problem of Mean Field Games\",\"authors\":\"Michael V. Klibanov, Jingzhi Li, Zhipeng Yang\",\"doi\":\"10.1007/s00245-024-10152-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convexification numerical method with the rigorously established global convergence property is constructed for a problem for the Mean Field Games System of the second order. This is the problem of the retrospective analysis of a game of infinitely many rational players. In addition to traditional initial and terminal conditions, one extra terminal condition is assumed to be known. Carleman estimates and a Carleman Weight Function play the key role. Numerical experiments demonstrate a good performance for complicated functions. Various versions of the convexification have been actively used by this research team for a number of years to numerically solve coefficient inverse problems.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10152-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10152-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convexification Numerical Method for the Retrospective Problem of Mean Field Games
The convexification numerical method with the rigorously established global convergence property is constructed for a problem for the Mean Field Games System of the second order. This is the problem of the retrospective analysis of a game of infinitely many rational players. In addition to traditional initial and terminal conditions, one extra terminal condition is assumed to be known. Carleman estimates and a Carleman Weight Function play the key role. Numerical experiments demonstrate a good performance for complicated functions. Various versions of the convexification have been actively used by this research team for a number of years to numerically solve coefficient inverse problems.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.