社论:内存计算》特刊

Wei Lu, Melika Payvand, Yuch-Chi Yang
{"title":"社论:内存计算》特刊","authors":"Wei Lu, Melika Payvand, Yuch-Chi Yang","doi":"10.1088/2634-4386/ad5829","DOIUrl":null,"url":null,"abstract":"\n Neuromorphic technologies aim to use the organizing principles of the brain to build efficient and intelligent systems, making them the center-piece between the biological and current Artificial Intelligence (AI) systems. Specifically, in conventional AI systems, one of the dominant sources of power consumption is the data movement between the memory and the processor units, known as the von Neumann bottleneck. In-memory computing solves this problem by co-locating memory and processing units, drastically reducing the power as the data are processed where they reside.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"21 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial: Focus Issue on In-Memory Computing\",\"authors\":\"Wei Lu, Melika Payvand, Yuch-Chi Yang\",\"doi\":\"10.1088/2634-4386/ad5829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Neuromorphic technologies aim to use the organizing principles of the brain to build efficient and intelligent systems, making them the center-piece between the biological and current Artificial Intelligence (AI) systems. Specifically, in conventional AI systems, one of the dominant sources of power consumption is the data movement between the memory and the processor units, known as the von Neumann bottleneck. In-memory computing solves this problem by co-locating memory and processing units, drastically reducing the power as the data are processed where they reside.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"21 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ad5829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad5829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经形态技术旨在利用大脑的组织原理构建高效的智能系统,使其成为生物系统与当前人工智能(AI)系统之间的核心。具体来说,在传统的人工智能系统中,功耗的主要来源之一是内存和处理器单元之间的数据移动,即所谓的冯-诺依曼瓶颈。内存计算通过将内存和处理单元共置来解决这一问题,由于数据在其所在位置进行处理,因此大大降低了功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial: Focus Issue on In-Memory Computing
Neuromorphic technologies aim to use the organizing principles of the brain to build efficient and intelligent systems, making them the center-piece between the biological and current Artificial Intelligence (AI) systems. Specifically, in conventional AI systems, one of the dominant sources of power consumption is the data movement between the memory and the processor units, known as the von Neumann bottleneck. In-memory computing solves this problem by co-locating memory and processing units, drastically reducing the power as the data are processed where they reside.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1