机器学习在岩隙带水文学中的应用:综述

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Vadose Zone Journal Pub Date : 2024-06-14 DOI:10.1002/vzj2.20361
Xiang Li, John L. Nieber, Vipin Kumar
{"title":"机器学习在岩隙带水文学中的应用:综述","authors":"Xiang Li, John L. Nieber, Vipin Kumar","doi":"10.1002/vzj2.20361","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning applications in vadose zone hydrology: A review\",\"authors\":\"Xiang Li, John L. Nieber, Vipin Kumar\",\"doi\":\"10.1002/vzj2.20361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20361\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20361","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,机器学习(ML)已广泛应用于地下蓄水层。本文全面回顾了这些发展。本文主要从预测的角度总结了 ML 在不同复杂渗流带过程变量中的应用。通过分析和评估这些应用,我们发现经典 ML 模型得到了广泛应用,而深度学习(DL)方法的应用则相对有限。我们还发现,土壤属性研究缺乏基准数据集,基于物理学原理的浸润带原理与 ML 方法的结合也很有限。为促进这一跨学科研究,我们提出了知识引导的机器学习范式,以及其他数据驱动和基于 ML 模型的研究建议,以推动未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning applications in vadose zone hydrology: A review
Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
期刊最新文献
Soil water content estimation by using ground penetrating radar data full waveform inversion with grey wolf optimizer algorithm Joint multiscale dynamics in soil–vegetation–atmosphere systems: Multifractal cross‐correlation analysis of arid and semiarid rangelands Soil hydraulic property maps for the contiguous United States at 100‐m resolution and seven depths: Code design and preliminary results Inverse analysis of soil hydraulic parameters of layered soil profiles using physics‐informed neural networks with unsaturated water flow models Quantitative experimental study on the apparent contact angle of unsaturated loess and its application in soil–water characteristics curve modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1