{"title":"苯甲酰基和苄基对糖基受体的非共价相互作用和电子特性的影响","authors":"","doi":"10.1080/07328303.2024.2366770","DOIUrl":null,"url":null,"abstract":"<div><div>Modulating the reactivity of glycosyl acceptors has become a key in promoting the chemical synthesis of complex glycans. Herein, computational chemistry was employed to explore the impacts of protecting groups on the non-covalent interactions and electronic properties of glycosyl acceptors. Wavefunction analyses showed that substituting benzoyl groups with benzyl groups and introducing a benzyl group to the C2 amine of a D-Glc<em>p</em>NAc residue can eliminate intra-/intermolecular hydrogen bonds, thereby altering the charge distribution significantly. This protecting group-induced charge distribution increases the nucleophilicity of hydroxyl group. This study may contribute to understanding the assistance of computational chemistry in glycan synthesis.</div></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"43 3","pages":"Pages 51-69"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impacts of benzoyl and benzyl groups on the non-covalent interactions and electronic properties of glycosyl acceptors\",\"authors\":\"\",\"doi\":\"10.1080/07328303.2024.2366770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modulating the reactivity of glycosyl acceptors has become a key in promoting the chemical synthesis of complex glycans. Herein, computational chemistry was employed to explore the impacts of protecting groups on the non-covalent interactions and electronic properties of glycosyl acceptors. Wavefunction analyses showed that substituting benzoyl groups with benzyl groups and introducing a benzyl group to the C2 amine of a D-Glc<em>p</em>NAc residue can eliminate intra-/intermolecular hydrogen bonds, thereby altering the charge distribution significantly. This protecting group-induced charge distribution increases the nucleophilicity of hydroxyl group. This study may contribute to understanding the assistance of computational chemistry in glycan synthesis.</div></div>\",\"PeriodicalId\":15311,\"journal\":{\"name\":\"Journal of Carbohydrate Chemistry\",\"volume\":\"43 3\",\"pages\":\"Pages 51-69\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Carbohydrate Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0732830324000168\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0732830324000168","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The impacts of benzoyl and benzyl groups on the non-covalent interactions and electronic properties of glycosyl acceptors
Modulating the reactivity of glycosyl acceptors has become a key in promoting the chemical synthesis of complex glycans. Herein, computational chemistry was employed to explore the impacts of protecting groups on the non-covalent interactions and electronic properties of glycosyl acceptors. Wavefunction analyses showed that substituting benzoyl groups with benzyl groups and introducing a benzyl group to the C2 amine of a D-GlcpNAc residue can eliminate intra-/intermolecular hydrogen bonds, thereby altering the charge distribution significantly. This protecting group-induced charge distribution increases the nucleophilicity of hydroxyl group. This study may contribute to understanding the assistance of computational chemistry in glycan synthesis.
期刊介绍:
The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal:
-novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates-
the use of chemical methods to address aspects of glycobiology-
spectroscopic and crystallographic structure studies of carbohydrates-
computational and molecular modeling studies-
physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.