Marcel Butschle, Markus Schackmann, Kim Dam-Johansen
{"title":"通过偶然性挑战聚氨酯涂料中的有毒锡催化剂","authors":"Marcel Butschle, Markus Schackmann, Kim Dam-Johansen","doi":"10.1007/s11998-024-00945-0","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional polyurethane (PU) catalysts, especially dibutyl tin dilaurate, face scrutiny over toxicity concerns, leading to interest in safer alternatives. In an unexpected turn of events, research into a commercially available antibacterial agent revealed that it drastically reduced the pot life of PU coatings. Experiments show that when PU coatings were formulated with the antibacterial agent as catalyst, drying time and solvent resistance were improved as compared to traditional tin and zirconium catalysts. Further analysis showed that this was the result of copper compounds and it could be shown that a similar catalytic effect was achieved through Cu(II)-sulfate and Cu(II)-acetate. Such copper salts are not yet commonly known as replacements for tin catalysts. Possible mechanisms such as heterogenous catalysis or in-situ formation of the active compound were discussed.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1857 - 1865"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00945-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Challenging toxic tin catalysts in polyurethane coatings through serendipity\",\"authors\":\"Marcel Butschle, Markus Schackmann, Kim Dam-Johansen\",\"doi\":\"10.1007/s11998-024-00945-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional polyurethane (PU) catalysts, especially dibutyl tin dilaurate, face scrutiny over toxicity concerns, leading to interest in safer alternatives. In an unexpected turn of events, research into a commercially available antibacterial agent revealed that it drastically reduced the pot life of PU coatings. Experiments show that when PU coatings were formulated with the antibacterial agent as catalyst, drying time and solvent resistance were improved as compared to traditional tin and zirconium catalysts. Further analysis showed that this was the result of copper compounds and it could be shown that a similar catalytic effect was achieved through Cu(II)-sulfate and Cu(II)-acetate. Such copper salts are not yet commonly known as replacements for tin catalysts. Possible mechanisms such as heterogenous catalysis or in-situ formation of the active compound were discussed.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 5\",\"pages\":\"1857 - 1865\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11998-024-00945-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-00945-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00945-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Challenging toxic tin catalysts in polyurethane coatings through serendipity
Traditional polyurethane (PU) catalysts, especially dibutyl tin dilaurate, face scrutiny over toxicity concerns, leading to interest in safer alternatives. In an unexpected turn of events, research into a commercially available antibacterial agent revealed that it drastically reduced the pot life of PU coatings. Experiments show that when PU coatings were formulated with the antibacterial agent as catalyst, drying time and solvent resistance were improved as compared to traditional tin and zirconium catalysts. Further analysis showed that this was the result of copper compounds and it could be shown that a similar catalytic effect was achieved through Cu(II)-sulfate and Cu(II)-acetate. Such copper salts are not yet commonly known as replacements for tin catalysts. Possible mechanisms such as heterogenous catalysis or in-situ formation of the active compound were discussed.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.