{"title":"双中心三电子半键如何影响 X-NH$$_3$$ 复合物(X = F、Cl 和 Br)中 NH$$_3$$ 的反转势垒","authors":"Amit Kumar, Pradeep Kumar","doi":"10.1007/s12039-024-02270-w","DOIUrl":null,"url":null,"abstract":"<p>In the present work, we have investigated the two-center three-electron (2c–3e) bond in <i>X</i>–NH<span>\\(_3\\)</span> (<span>\\(X=\\mathrm{F,\\ Cl\\ and\\ Br}\\)</span>) complex using quantum chemical calculations. It was found that ammonia can form two types of the complex with halogen radical through the 2c–3e bond, one when halogen interacts with ammonia from the opposite side of hydrogen (RC1), and the other from the adjacent side of hydrogen (RC2). Further, it was found that RC1 and RC2 are connected to each other via ammonia inversion mode. However, compared to ammonia inversion, which is a symmetric double-well potential, here one stationary point (RC2) is close to TS, whereas the other (RC2) is far from the TS. Further, the energy barrier for the conversion of RC1 to RC2 in <i>X</i>–NH<span>\\(_3\\)</span> complexes are found to be lower than the barrier associated with ammonia inversion in bare NH<span>\\(_3\\)</span> molecule. Interestingly, the inter-conversion dynamics of RC1 and RC2 investigated via Born–Oppenheimer molecular dynamics (BOMD) simulation suggests that it can be an example of Polanyi’s mode selective rules for an extreme late and early barrier reaction system, and can play a crucial role in explaining various peculiar dynamical effects found in <span>\\(X+\\mathrm{NH}_3\\rightarrow \\mathrm{HX}+\\mathrm{NH}_2\\)</span> chemical systems.</p><p>In the present work, the effect of hemibond formed between ammonia and halogen (F, Cl and Br) atom on the inversion barrier of ammonia is studied. It was found that in the presence of halogen atom the inversion barrier of ammonia decreases substantially. It was also observed that higher the electronegative halogen atom, greater the effect on the inversion barrier of ammonia.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the two-center three-electron hemibond affect the inversion barrier of NH\\\\(_3\\\\) in X-NH\\\\(_3\\\\) complex (X = F, Cl and Br)\",\"authors\":\"Amit Kumar, Pradeep Kumar\",\"doi\":\"10.1007/s12039-024-02270-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, we have investigated the two-center three-electron (2c–3e) bond in <i>X</i>–NH<span>\\\\(_3\\\\)</span> (<span>\\\\(X=\\\\mathrm{F,\\\\ Cl\\\\ and\\\\ Br}\\\\)</span>) complex using quantum chemical calculations. It was found that ammonia can form two types of the complex with halogen radical through the 2c–3e bond, one when halogen interacts with ammonia from the opposite side of hydrogen (RC1), and the other from the adjacent side of hydrogen (RC2). Further, it was found that RC1 and RC2 are connected to each other via ammonia inversion mode. However, compared to ammonia inversion, which is a symmetric double-well potential, here one stationary point (RC2) is close to TS, whereas the other (RC2) is far from the TS. Further, the energy barrier for the conversion of RC1 to RC2 in <i>X</i>–NH<span>\\\\(_3\\\\)</span> complexes are found to be lower than the barrier associated with ammonia inversion in bare NH<span>\\\\(_3\\\\)</span> molecule. Interestingly, the inter-conversion dynamics of RC1 and RC2 investigated via Born–Oppenheimer molecular dynamics (BOMD) simulation suggests that it can be an example of Polanyi’s mode selective rules for an extreme late and early barrier reaction system, and can play a crucial role in explaining various peculiar dynamical effects found in <span>\\\\(X+\\\\mathrm{NH}_3\\\\rightarrow \\\\mathrm{HX}+\\\\mathrm{NH}_2\\\\)</span> chemical systems.</p><p>In the present work, the effect of hemibond formed between ammonia and halogen (F, Cl and Br) atom on the inversion barrier of ammonia is studied. It was found that in the presence of halogen atom the inversion barrier of ammonia decreases substantially. It was also observed that higher the electronegative halogen atom, greater the effect on the inversion barrier of ammonia.</p>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-024-02270-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02270-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
How the two-center three-electron hemibond affect the inversion barrier of NH\(_3\) in X-NH\(_3\) complex (X = F, Cl and Br)
In the present work, we have investigated the two-center three-electron (2c–3e) bond in X–NH\(_3\) (\(X=\mathrm{F,\ Cl\ and\ Br}\)) complex using quantum chemical calculations. It was found that ammonia can form two types of the complex with halogen radical through the 2c–3e bond, one when halogen interacts with ammonia from the opposite side of hydrogen (RC1), and the other from the adjacent side of hydrogen (RC2). Further, it was found that RC1 and RC2 are connected to each other via ammonia inversion mode. However, compared to ammonia inversion, which is a symmetric double-well potential, here one stationary point (RC2) is close to TS, whereas the other (RC2) is far from the TS. Further, the energy barrier for the conversion of RC1 to RC2 in X–NH\(_3\) complexes are found to be lower than the barrier associated with ammonia inversion in bare NH\(_3\) molecule. Interestingly, the inter-conversion dynamics of RC1 and RC2 investigated via Born–Oppenheimer molecular dynamics (BOMD) simulation suggests that it can be an example of Polanyi’s mode selective rules for an extreme late and early barrier reaction system, and can play a crucial role in explaining various peculiar dynamical effects found in \(X+\mathrm{NH}_3\rightarrow \mathrm{HX}+\mathrm{NH}_2\) chemical systems.
In the present work, the effect of hemibond formed between ammonia and halogen (F, Cl and Br) atom on the inversion barrier of ammonia is studied. It was found that in the presence of halogen atom the inversion barrier of ammonia decreases substantially. It was also observed that higher the electronegative halogen atom, greater the effect on the inversion barrier of ammonia.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.