{"title":"强电磁波对圆柱形量子线量子霍尔效应的影响","authors":"H. D. Trien","doi":"10.47191/rajar/v10i06.02","DOIUrl":null,"url":null,"abstract":"The impact of strong electromagnetic waves Hall effect is studied theoretically in a Cylindrical Quantum Wire (CQW) with infinitely high potential inside the wire and elsewhere subjected to a dc electric field , a magnetic field and a laser radiation . By using the quantum kinetic equation method for electrons interacting with Acoustic Phonon (AP) at low temperatures, we obtain analytical expressions for the conductivity tensor and the Hall Coefficient (HC), which are different from in comparison to those obtained for a rectangular quantum wire (RQW) or two-dimensional (2D) electron systems. Numerical calculations are also applied for GaAs/GaAsAl CQW to show the nonlinear dependence of the HC on the electromagnetic wave (EMW) frequency, and the radius, the length characteristic parameters of CQW. Wave function and energy spectrum in a CQW are dissiminar to those in Quantum Wires (QWs). Therefore, all numerical results are different from those in the case of QWs. The most important result is that the HC reaches saturation as the radius, the length of CQW or the EMW frequency increases.","PeriodicalId":20848,"journal":{"name":"RA JOURNAL OF APPLIED RESEARCH","volume":"62 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of a Strong Electromagnetic Wave on the Quantum Hall Effect in Cylindrical Quantum Wires\",\"authors\":\"H. D. Trien\",\"doi\":\"10.47191/rajar/v10i06.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of strong electromagnetic waves Hall effect is studied theoretically in a Cylindrical Quantum Wire (CQW) with infinitely high potential inside the wire and elsewhere subjected to a dc electric field , a magnetic field and a laser radiation . By using the quantum kinetic equation method for electrons interacting with Acoustic Phonon (AP) at low temperatures, we obtain analytical expressions for the conductivity tensor and the Hall Coefficient (HC), which are different from in comparison to those obtained for a rectangular quantum wire (RQW) or two-dimensional (2D) electron systems. Numerical calculations are also applied for GaAs/GaAsAl CQW to show the nonlinear dependence of the HC on the electromagnetic wave (EMW) frequency, and the radius, the length characteristic parameters of CQW. Wave function and energy spectrum in a CQW are dissiminar to those in Quantum Wires (QWs). Therefore, all numerical results are different from those in the case of QWs. The most important result is that the HC reaches saturation as the radius, the length of CQW or the EMW frequency increases.\",\"PeriodicalId\":20848,\"journal\":{\"name\":\"RA JOURNAL OF APPLIED RESEARCH\",\"volume\":\"62 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RA JOURNAL OF APPLIED RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47191/rajar/v10i06.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RA JOURNAL OF APPLIED RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47191/rajar/v10i06.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of a Strong Electromagnetic Wave on the Quantum Hall Effect in Cylindrical Quantum Wires
The impact of strong electromagnetic waves Hall effect is studied theoretically in a Cylindrical Quantum Wire (CQW) with infinitely high potential inside the wire and elsewhere subjected to a dc electric field , a magnetic field and a laser radiation . By using the quantum kinetic equation method for electrons interacting with Acoustic Phonon (AP) at low temperatures, we obtain analytical expressions for the conductivity tensor and the Hall Coefficient (HC), which are different from in comparison to those obtained for a rectangular quantum wire (RQW) or two-dimensional (2D) electron systems. Numerical calculations are also applied for GaAs/GaAsAl CQW to show the nonlinear dependence of the HC on the electromagnetic wave (EMW) frequency, and the radius, the length characteristic parameters of CQW. Wave function and energy spectrum in a CQW are dissiminar to those in Quantum Wires (QWs). Therefore, all numerical results are different from those in the case of QWs. The most important result is that the HC reaches saturation as the radius, the length of CQW or the EMW frequency increases.