固体中杂质空位扩散的动力学同位素效应理论研究

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Acta Geochimica Pub Date : 2024-06-13 DOI:10.1007/s11631-024-00706-1
Yuxi Jing, Xuefang Li, Yun Liu
{"title":"固体中杂质空位扩散的动力学同位素效应理论研究","authors":"Yuxi Jing,&nbsp;Xuefang Li,&nbsp;Yun Liu","doi":"10.1007/s11631-024-00706-1","DOIUrl":null,"url":null,"abstract":"<div><p>Theoretical studies of the diffusional isotope effect in solids are still stuck in the 1960s and 1970s. With the development of high spatial resolution mass spectrometers, isotopic data of mineral grains are rapidly accumulated. To dig up information from these data, molecular-level theoretical models are urgently needed. Based on the microscopic definition of the diffusion coefficient (<i>D</i>), a new theoretical framework for calculating the diffusional isotope effect (DIE<sub>(v)</sub>) (in terms of <i>D</i><sup><i>*</i></sup><i>/D</i>) for vacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism. The newly derived equation shows that the DIE<sub>(v)</sub> can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained. The calculated DIE<sub>(v)</sub> values of <sup>199</sup>Au/<sup>195</sup>Au and <sup>60</sup>Co/<sup>57</sup>Co during diffusion in Cu and Au metals are all within 1% of errors compared to the experimental data, which shows that this theoretical model is reasonable and precise.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 5","pages":"959 - 970"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study of kinetic isotope effects for vacancy diffusion of impurity in solids\",\"authors\":\"Yuxi Jing,&nbsp;Xuefang Li,&nbsp;Yun Liu\",\"doi\":\"10.1007/s11631-024-00706-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Theoretical studies of the diffusional isotope effect in solids are still stuck in the 1960s and 1970s. With the development of high spatial resolution mass spectrometers, isotopic data of mineral grains are rapidly accumulated. To dig up information from these data, molecular-level theoretical models are urgently needed. Based on the microscopic definition of the diffusion coefficient (<i>D</i>), a new theoretical framework for calculating the diffusional isotope effect (DIE<sub>(v)</sub>) (in terms of <i>D</i><sup><i>*</i></sup><i>/D</i>) for vacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism. The newly derived equation shows that the DIE<sub>(v)</sub> can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained. The calculated DIE<sub>(v)</sub> values of <sup>199</sup>Au/<sup>195</sup>Au and <sup>60</sup>Co/<sup>57</sup>Co during diffusion in Cu and Au metals are all within 1% of errors compared to the experimental data, which shows that this theoretical model is reasonable and precise.</p></div>\",\"PeriodicalId\":7151,\"journal\":{\"name\":\"Acta Geochimica\",\"volume\":\"43 5\",\"pages\":\"959 - 970\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geochimica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11631-024-00706-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00706-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对固体中扩散同位素效应的理论研究仍停留在二十世纪六七十年代。随着高空间分辨率质谱仪的发展,矿物颗粒的同位素数据迅速积累。要从这些数据中挖掘信息,迫切需要分子水平的理论模型。基于扩散系数(D)的微观定义,研究人员在统计力学形式主义的基础上,为计算固体中空位介导的杂质扩散的扩散同位素效应(DIE(v))(以 D*/D 表示)提供了一个新的理论框架。新推导出的方程表明,只要获得同位素取代固体的振动频率,就能轻松计算出 DIE(v)。计算出的 199Au/195Au 和 60Co/57Co 在铜和金金属中扩散时的 DIE(v) 值与实验数据相比误差均在 1%以内,这表明该理论模型是合理而精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical study of kinetic isotope effects for vacancy diffusion of impurity in solids

Theoretical studies of the diffusional isotope effect in solids are still stuck in the 1960s and 1970s. With the development of high spatial resolution mass spectrometers, isotopic data of mineral grains are rapidly accumulated. To dig up information from these data, molecular-level theoretical models are urgently needed. Based on the microscopic definition of the diffusion coefficient (D), a new theoretical framework for calculating the diffusional isotope effect (DIE(v)) (in terms of D*/D) for vacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism. The newly derived equation shows that the DIE(v) can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained. The calculated DIE(v) values of 199Au/195Au and 60Co/57Co during diffusion in Cu and Au metals are all within 1% of errors compared to the experimental data, which shows that this theoretical model is reasonable and precise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geochimica
Acta Geochimica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
2.80
自引率
6.20%
发文量
1134
期刊介绍: Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects: • Cosmochemistry • Mantle Geochemistry • Ore-deposit Geochemistry • Organic Geochemistry • Environmental Geochemistry • Computational Geochemistry • Isotope Geochemistry • NanoGeochemistry All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.
期刊最新文献
The discovery of Late Triassic hypabyssal mafic dykes in the Huozhou complex and their geological significance: Evidence from petrology, geochemistry, and geochronology Mineralogical study and significance of the basalt-hosted Carlin-type Au deposits in southwestern Guizhou Province, China Precise and accurate Ga isotope ratio measurements of geological samples by multi-collector inductively coupled plasma mass spectrometry Geology and S-Pb isotope geochemistry of the Hatu gold deposit in West Junggar, NW China: Insights into ore genesis and metal source Ore-forming mechanism of Huxu Au-dominated polymetallic deposit in the Dongxiang Basin, South China: Constraints from in-situ trace elements and S–Pb isotopes of pyrite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1