{"title":"释放特定层生长因子的核壳微纤维支架同轴流体动力打印技术用于内植物再生","authors":"L. Bai, Meiguang Xu, Zijie Meng, Zhennan Qiu, Jintao Xiu, Baojun Chen, Qian Han, Qiaonan Liu, Pei He, Nuanyang Wen, Jiankang He, Jing Zhang, Zhanhai Yin","doi":"10.1088/2631-7990/ad5806","DOIUrl":null,"url":null,"abstract":"\n Herein, a tri-layered core-shell microfibrous scaffold with layer-specific growth factors (GFs) release is developed using coaxial electrohydrodynamic (EHD) printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair. SDF-1 is loaded in the shell, while bFGF, TGF-β, and BMP-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner. Correspondingly, the tri-layered microfibrous scaffolds have a core-shell fiber size of 25.7 ± 5.1 μm, with a pore size sequentially increasing from 81.5 ± 4.6 μm to 173.3 ± 6.9 μm, and to 388.9 ± 6.9 μm for the tenogenic, chondrogenic, and osteogenic instructive layers. A rapid release of embedded GFs is observed within the first 2 days, followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks. The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte, chondrocyte, and osteocyte phenotype in vitro. When implanted in vivo, the tri-layered core-shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients. Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"55 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coaxial electrohydrodynamic printing of core-shell microfibrous scaffolds with layer-specific growth factors release for enthesis regeneration\",\"authors\":\"L. Bai, Meiguang Xu, Zijie Meng, Zhennan Qiu, Jintao Xiu, Baojun Chen, Qian Han, Qiaonan Liu, Pei He, Nuanyang Wen, Jiankang He, Jing Zhang, Zhanhai Yin\",\"doi\":\"10.1088/2631-7990/ad5806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Herein, a tri-layered core-shell microfibrous scaffold with layer-specific growth factors (GFs) release is developed using coaxial electrohydrodynamic (EHD) printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair. SDF-1 is loaded in the shell, while bFGF, TGF-β, and BMP-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner. Correspondingly, the tri-layered microfibrous scaffolds have a core-shell fiber size of 25.7 ± 5.1 μm, with a pore size sequentially increasing from 81.5 ± 4.6 μm to 173.3 ± 6.9 μm, and to 388.9 ± 6.9 μm for the tenogenic, chondrogenic, and osteogenic instructive layers. A rapid release of embedded GFs is observed within the first 2 days, followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks. The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte, chondrocyte, and osteocyte phenotype in vitro. When implanted in vivo, the tri-layered core-shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients. Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.\",\"PeriodicalId\":502508,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad5806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad5806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coaxial electrohydrodynamic printing of core-shell microfibrous scaffolds with layer-specific growth factors release for enthesis regeneration
Herein, a tri-layered core-shell microfibrous scaffold with layer-specific growth factors (GFs) release is developed using coaxial electrohydrodynamic (EHD) printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair. SDF-1 is loaded in the shell, while bFGF, TGF-β, and BMP-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner. Correspondingly, the tri-layered microfibrous scaffolds have a core-shell fiber size of 25.7 ± 5.1 μm, with a pore size sequentially increasing from 81.5 ± 4.6 μm to 173.3 ± 6.9 μm, and to 388.9 ± 6.9 μm for the tenogenic, chondrogenic, and osteogenic instructive layers. A rapid release of embedded GFs is observed within the first 2 days, followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks. The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte, chondrocyte, and osteocyte phenotype in vitro. When implanted in vivo, the tri-layered core-shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients. Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.