Xiaojun Niu, Cun Ao, Jizhong Yu, Yun Zhao, Haitao Huang
{"title":"GC-MS 结合蛋白质组分析不同香气类型绿茶中的挥发性化合物及其形成机理","authors":"Xiaojun Niu, Cun Ao, Jizhong Yu, Yun Zhao, Haitao Huang","doi":"10.3390/foods13121848","DOIUrl":null,"url":null,"abstract":"Aroma is one of the key factors for evaluating the quality of green tea. A tender aroma (NX) and floral-like aroma (HX) are two types of high-quality aroma of green tea. In this work, the different aroma types of baked green tea were classified by sensory evaluation. Then, seven tea samples with a typical tender or floral-like aroma were selected for further volatile component analysis by GC-MS. A total of 43 aroma compounds were identified in two different aroma types of baked green tea samples. The PCA showed that linalool, geraniol, 3-hexenyl butyrate, and 3-hexenyl hexanoate were the major volatiles contributing to the HX. On the other hand, most of the alcohol volatiles, such as 1-octanol, 1-octen-3-ol, 1-dodecanol, 1-hexadecanol, phenylethyl alcohol, benzyl alcohol, aldehydes and some hydrocarbons contributed more to the NX. In addition, the chemical composition analysis showed that the content of free amino acids was higher in NX green tea samples, while the content of catechins was relatively higher in HX tea samples. A proteomic analysis revealed that most of the enzymes involved in VPBs pathways, such as phenylalanine ammonialyase, peroxidase, and shikimate-O-hydroxycinnamoyl transferase, were more abundant in NX than in HX tea samples. These results laid a foundation for the aroma formation mechanism of different aroma types of baked green tea and provided some theoretical guidance for the breeding of specific aroma varieties.","PeriodicalId":502667,"journal":{"name":"Foods","volume":"52 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GC-MS Combined with Proteomic Analysis of Volatile Compounds and Formation Mechanisms in Green Teas with Different Aroma Types\",\"authors\":\"Xiaojun Niu, Cun Ao, Jizhong Yu, Yun Zhao, Haitao Huang\",\"doi\":\"10.3390/foods13121848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aroma is one of the key factors for evaluating the quality of green tea. A tender aroma (NX) and floral-like aroma (HX) are two types of high-quality aroma of green tea. In this work, the different aroma types of baked green tea were classified by sensory evaluation. Then, seven tea samples with a typical tender or floral-like aroma were selected for further volatile component analysis by GC-MS. A total of 43 aroma compounds were identified in two different aroma types of baked green tea samples. The PCA showed that linalool, geraniol, 3-hexenyl butyrate, and 3-hexenyl hexanoate were the major volatiles contributing to the HX. On the other hand, most of the alcohol volatiles, such as 1-octanol, 1-octen-3-ol, 1-dodecanol, 1-hexadecanol, phenylethyl alcohol, benzyl alcohol, aldehydes and some hydrocarbons contributed more to the NX. In addition, the chemical composition analysis showed that the content of free amino acids was higher in NX green tea samples, while the content of catechins was relatively higher in HX tea samples. A proteomic analysis revealed that most of the enzymes involved in VPBs pathways, such as phenylalanine ammonialyase, peroxidase, and shikimate-O-hydroxycinnamoyl transferase, were more abundant in NX than in HX tea samples. These results laid a foundation for the aroma formation mechanism of different aroma types of baked green tea and provided some theoretical guidance for the breeding of specific aroma varieties.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13121848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13121848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GC-MS Combined with Proteomic Analysis of Volatile Compounds and Formation Mechanisms in Green Teas with Different Aroma Types
Aroma is one of the key factors for evaluating the quality of green tea. A tender aroma (NX) and floral-like aroma (HX) are two types of high-quality aroma of green tea. In this work, the different aroma types of baked green tea were classified by sensory evaluation. Then, seven tea samples with a typical tender or floral-like aroma were selected for further volatile component analysis by GC-MS. A total of 43 aroma compounds were identified in two different aroma types of baked green tea samples. The PCA showed that linalool, geraniol, 3-hexenyl butyrate, and 3-hexenyl hexanoate were the major volatiles contributing to the HX. On the other hand, most of the alcohol volatiles, such as 1-octanol, 1-octen-3-ol, 1-dodecanol, 1-hexadecanol, phenylethyl alcohol, benzyl alcohol, aldehydes and some hydrocarbons contributed more to the NX. In addition, the chemical composition analysis showed that the content of free amino acids was higher in NX green tea samples, while the content of catechins was relatively higher in HX tea samples. A proteomic analysis revealed that most of the enzymes involved in VPBs pathways, such as phenylalanine ammonialyase, peroxidase, and shikimate-O-hydroxycinnamoyl transferase, were more abundant in NX than in HX tea samples. These results laid a foundation for the aroma formation mechanism of different aroma types of baked green tea and provided some theoretical guidance for the breeding of specific aroma varieties.