论南极环极洋流表层海洋中岁差经向涡引起的热通量的重要性

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2024-06-13 DOI:10.1175/jpo-d-24-0002.1
Ruiyi Chen, Yiyong Luo, Zhiwei Zhang, Fukai Liu
{"title":"论南极环极洋流表层海洋中岁差经向涡引起的热通量的重要性","authors":"Ruiyi Chen, Yiyong Luo, Zhiwei Zhang, Fukai Liu","doi":"10.1175/jpo-d-24-0002.1","DOIUrl":null,"url":null,"abstract":"\nEddy-induced heat flux (EHF) convergence plays an important role in balancing the cooling of mean flows in the heat budget of Southern Ocean. This study investigates the EHF in the Southern Ocean and the surface ocean heat budget over the Antarctic Circumpolar Current (ACC) estimated through a high-resolution ocean assimilation product. In contrast to previous studies in which the estimation of the EHF in the Southern Ocean was based on the assumption that mesoscale eddies are quasi-geostrophic turbulence, we find that more than one third of the total meridional EHF in the surface layer is attributed to ageostrophic currents of eddies, and that the ageostrophic component of the EHF convergence is as important as its geostrophic component for the surface ocean heat budget over the ACC. In particular, the ageostrophic meridional EHF convergence accounts for 22% of the warming needed to balance the cooling from the mean flows during winter, equivalent to warming the surface ocean of the ACC by 0.14° C. The ageostrophic meridional EHF is likely caused by the stirring effect of ageostrophic secondary circulations in mesoscale eddies, which are induced by the turbulent thermal wind balance to restore the vertical shear of the upper layer in mesoscale eddies destructed by intense winter winds.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Significance of Ageostrophic Meridional Eddy-Induced Heat Flux in the Surface Ocean of the Antarctic Circumpolar Current\",\"authors\":\"Ruiyi Chen, Yiyong Luo, Zhiwei Zhang, Fukai Liu\",\"doi\":\"10.1175/jpo-d-24-0002.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nEddy-induced heat flux (EHF) convergence plays an important role in balancing the cooling of mean flows in the heat budget of Southern Ocean. This study investigates the EHF in the Southern Ocean and the surface ocean heat budget over the Antarctic Circumpolar Current (ACC) estimated through a high-resolution ocean assimilation product. In contrast to previous studies in which the estimation of the EHF in the Southern Ocean was based on the assumption that mesoscale eddies are quasi-geostrophic turbulence, we find that more than one third of the total meridional EHF in the surface layer is attributed to ageostrophic currents of eddies, and that the ageostrophic component of the EHF convergence is as important as its geostrophic component for the surface ocean heat budget over the ACC. In particular, the ageostrophic meridional EHF convergence accounts for 22% of the warming needed to balance the cooling from the mean flows during winter, equivalent to warming the surface ocean of the ACC by 0.14° C. The ageostrophic meridional EHF is likely caused by the stirring effect of ageostrophic secondary circulations in mesoscale eddies, which are induced by the turbulent thermal wind balance to restore the vertical shear of the upper layer in mesoscale eddies destructed by intense winter winds.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-24-0002.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-24-0002.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

涡动热通量(EHF)辐合在平衡南大洋热预算中平均流的冷却方面起着重要作用。本研究调查了南大洋的涡导热通量和通过高分辨率海洋同化产品估算的南极环极洋流(ACC)表层海洋热预算。与以往基于中尺度漩涡是准地转湍流的假设来估算南大洋 EHF 的研究不同,我们发现表层经向 EHF 总量的三分之一以上是由漩涡的地转湍流造成的,而且 EHF 收敛的地转湍流分量与地转湍流分量对南极环极洋流表层海洋热预算同样重要。特别是,在冬季平衡平均气流冷却所需的增温中,老化经向 EHF 汇聚占 22%,相当于使 ACC 表层海洋增温 0.14 摄氏度。老化经向 EHF 可能是由中尺度漩涡中的老化次级环流的搅动效应引起的,这种次级环流是由湍流热风平衡引起的,目的是恢复被冬季强风破坏的中尺度漩涡上层的垂直切变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Significance of Ageostrophic Meridional Eddy-Induced Heat Flux in the Surface Ocean of the Antarctic Circumpolar Current
Eddy-induced heat flux (EHF) convergence plays an important role in balancing the cooling of mean flows in the heat budget of Southern Ocean. This study investigates the EHF in the Southern Ocean and the surface ocean heat budget over the Antarctic Circumpolar Current (ACC) estimated through a high-resolution ocean assimilation product. In contrast to previous studies in which the estimation of the EHF in the Southern Ocean was based on the assumption that mesoscale eddies are quasi-geostrophic turbulence, we find that more than one third of the total meridional EHF in the surface layer is attributed to ageostrophic currents of eddies, and that the ageostrophic component of the EHF convergence is as important as its geostrophic component for the surface ocean heat budget over the ACC. In particular, the ageostrophic meridional EHF convergence accounts for 22% of the warming needed to balance the cooling from the mean flows during winter, equivalent to warming the surface ocean of the ACC by 0.14° C. The ageostrophic meridional EHF is likely caused by the stirring effect of ageostrophic secondary circulations in mesoscale eddies, which are induced by the turbulent thermal wind balance to restore the vertical shear of the upper layer in mesoscale eddies destructed by intense winter winds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon Strait The eastern Mediterranean boundary current: seasonality, stability, and spiral formation Tidal conversion into vertical normal modes by near-critical topography An overlooked component of the meridional overturning circulation Models of the sea-surface height expression of the internal-wave continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1