并联机械手的统一动力学分析:基于关节的方法和并联机械手的广义惯性约束矩阵(GICM-P)框架

Majid Koul, Vinay Gupta, S. K. Saha
{"title":"并联机械手的统一动力学分析:基于关节的方法和并联机械手的广义惯性约束矩阵(GICM-P)框架","authors":"Majid Koul, Vinay Gupta, S. K. Saha","doi":"10.1177/14644193241260117","DOIUrl":null,"url":null,"abstract":"Parallel manipulators, a distinctive subset of closed-loop multi-body systems, are in high demand due to their precision-centric applications. This research introduces a unified approach to tackle both inverse and forward dynamic analyses of parallel manipulators, rooted in joint-based principles. The methodology dissects a given parallel manipulator into symmetric open-loop subsystems and a mobile body within either a planar or spatial context, depending on the manipulator’s nature. Conventional practices, involving the introduction of joint cuts at relevant locations, are employed to partition the system into multiple open-loop subsystems. Subsequently, the joint coordinate-based approach, typically applied to open-loop systems such as industrial manipulators, is utilized to derive solutions. In particular, this approach focuses on forward dynamics by introducing the generalized inertia constraint matrix for parallel manipulators (GICM-P), a concept built upon the authors’ prior work, originally addressing the GICM for general closed-loop systems. Notably, GICM-P aligns conceptually with the operational space inertia matrix (OSIM) designed for closed-loop systems elsewhere. However, unlike OSIM, which requires mapping joint-space inertia to operational-space inertia, GICM-P leverages acceleration-level constraints between subsystems and the moving platform through straightforward matrix operations. GICM-P offers a deeper understanding of the physics of the problem compared to OSIM, primarily due to its ability to explicitly express subsystem-level interactions via various block matrices – an aspect not previously documented. The paper provides explicit numerical values for GICM-P in the context of a spatial six degrees of freedom (6-DOF) Stewart platform and a planar 3-DOF parallel manipulator along with interpretations.","PeriodicalId":510687,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics","volume":"55 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified dynamics analysis of parallel manipulators: A joint-based approach and generalized inertia constraint matrix for parallel manipulators (GICM-P) framework\",\"authors\":\"Majid Koul, Vinay Gupta, S. K. Saha\",\"doi\":\"10.1177/14644193241260117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel manipulators, a distinctive subset of closed-loop multi-body systems, are in high demand due to their precision-centric applications. This research introduces a unified approach to tackle both inverse and forward dynamic analyses of parallel manipulators, rooted in joint-based principles. The methodology dissects a given parallel manipulator into symmetric open-loop subsystems and a mobile body within either a planar or spatial context, depending on the manipulator’s nature. Conventional practices, involving the introduction of joint cuts at relevant locations, are employed to partition the system into multiple open-loop subsystems. Subsequently, the joint coordinate-based approach, typically applied to open-loop systems such as industrial manipulators, is utilized to derive solutions. In particular, this approach focuses on forward dynamics by introducing the generalized inertia constraint matrix for parallel manipulators (GICM-P), a concept built upon the authors’ prior work, originally addressing the GICM for general closed-loop systems. Notably, GICM-P aligns conceptually with the operational space inertia matrix (OSIM) designed for closed-loop systems elsewhere. However, unlike OSIM, which requires mapping joint-space inertia to operational-space inertia, GICM-P leverages acceleration-level constraints between subsystems and the moving platform through straightforward matrix operations. GICM-P offers a deeper understanding of the physics of the problem compared to OSIM, primarily due to its ability to explicitly express subsystem-level interactions via various block matrices – an aspect not previously documented. The paper provides explicit numerical values for GICM-P in the context of a spatial six degrees of freedom (6-DOF) Stewart platform and a planar 3-DOF parallel manipulator along with interpretations.\",\"PeriodicalId\":510687,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193241260117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14644193241260117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

并联机械手是闭环多体系统的一个独特子集,因其以精度为中心的应用而备受青睐。这项研究以基于关节的原理为基础,引入了一种统一的方法来处理并联机械手的逆向和正向动态分析。该方法根据机械手的性质,将给定的并联机械手分解为对称开环子系统和平面或空间范围内的移动体。采用传统方法,包括在相关位置引入关节切割,将系统划分为多个开环子系统。随后,利用通常应用于开环系统(如工业机械手)的基于联合坐标的方法来推导解决方案。特别是,这种方法通过引入并行机械手的广义惯性约束矩阵(GICM-P),将重点放在前向动力学上,这一概念建立在作者之前的工作基础上,最初是针对一般闭环系统的 GICM。值得注意的是,GICM-P 在概念上与其他地方为闭环系统设计的操作空间惯性矩阵 (OSIM) 一致。不过,OSIM 需要将联合空间惯性映射到运行空间惯性,而 GICM-P 则不同,它通过直接的矩阵运算,利用子系统和移动平台之间的加速度级约束。与 OSIM 相比,GICM-P 能更深入地理解问题的物理原理,这主要归功于它能通过各种分块矩阵明确表达子系统级的交互作用--这是以前未曾记载过的方面。本文以空间六自由度(6-DOF)斯图尔特平台和平面三自由度并行机械手为背景,提供了 GICM-P 的明确数值,并进行了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified dynamics analysis of parallel manipulators: A joint-based approach and generalized inertia constraint matrix for parallel manipulators (GICM-P) framework
Parallel manipulators, a distinctive subset of closed-loop multi-body systems, are in high demand due to their precision-centric applications. This research introduces a unified approach to tackle both inverse and forward dynamic analyses of parallel manipulators, rooted in joint-based principles. The methodology dissects a given parallel manipulator into symmetric open-loop subsystems and a mobile body within either a planar or spatial context, depending on the manipulator’s nature. Conventional practices, involving the introduction of joint cuts at relevant locations, are employed to partition the system into multiple open-loop subsystems. Subsequently, the joint coordinate-based approach, typically applied to open-loop systems such as industrial manipulators, is utilized to derive solutions. In particular, this approach focuses on forward dynamics by introducing the generalized inertia constraint matrix for parallel manipulators (GICM-P), a concept built upon the authors’ prior work, originally addressing the GICM for general closed-loop systems. Notably, GICM-P aligns conceptually with the operational space inertia matrix (OSIM) designed for closed-loop systems elsewhere. However, unlike OSIM, which requires mapping joint-space inertia to operational-space inertia, GICM-P leverages acceleration-level constraints between subsystems and the moving platform through straightforward matrix operations. GICM-P offers a deeper understanding of the physics of the problem compared to OSIM, primarily due to its ability to explicitly express subsystem-level interactions via various block matrices – an aspect not previously documented. The paper provides explicit numerical values for GICM-P in the context of a spatial six degrees of freedom (6-DOF) Stewart platform and a planar 3-DOF parallel manipulator along with interpretations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Negative effect and optimal control of in-wheel motor with inclined eccentricity on driving safety for electric vehicle Proposing a novel nonlinear integrated control technique for an electric power steering system to improve automotive dynamic stability Unified dynamics analysis of parallel manipulators: A joint-based approach and generalized inertia constraint matrix for parallel manipulators (GICM-P) framework Dynamics analysis and chatter control of a polishing and milling nonideal flexible manipulator Dynamic modeling of a synchronous reluctance machine for transient simulation of vibrations under variable rotor magnetization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1