光学组织模型验证模型校准中的小数据

Adam Władziński, Grzegorz Orlicki, Michał Barczak, Małogrzata Szczerska, Jacek Łubiński, Filip Janiak
{"title":"光学组织模型验证模型校准中的小数据","authors":"Adam Władziński, Grzegorz Orlicki, Michał Barczak, Małogrzata Szczerska, Jacek Łubiński, Filip Janiak","doi":"10.1117/12.3021367","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms traditionally rely on large datasets for high accuracy. However, advances in the field are now enabling the exploration of solutions in niche engineering areas with smaller datasets. This article reviews the challenges and solutions in working with small datasets, particularly in optoelectronics and biomedical engineering. In optoelectronics, small datasets are key for designing and validating photonic systems, as experiments with living tissues can be costly and complex. The article discusses optimizing photonic response simulations and system calibration using machine learning models that are effective with smaller datasets. In biomedical engineering, the focus is on 3D-printed tissue phantoms, which mimic living tissue properties for non-invasive validation of photonic devices in diagnostics. The study explores how small data techniques like transfer learning, bootstrapping, regularization, and K-fold cross-validation can improve interpretations from small datasets, enhance predictive capabilities, and address data scarcity issues.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":"53 5","pages":"131870J - 131870J-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small data in model calibration for optical tissue phantom validation\",\"authors\":\"Adam Władziński, Grzegorz Orlicki, Michał Barczak, Małogrzata Szczerska, Jacek Łubiński, Filip Janiak\",\"doi\":\"10.1117/12.3021367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms traditionally rely on large datasets for high accuracy. However, advances in the field are now enabling the exploration of solutions in niche engineering areas with smaller datasets. This article reviews the challenges and solutions in working with small datasets, particularly in optoelectronics and biomedical engineering. In optoelectronics, small datasets are key for designing and validating photonic systems, as experiments with living tissues can be costly and complex. The article discusses optimizing photonic response simulations and system calibration using machine learning models that are effective with smaller datasets. In biomedical engineering, the focus is on 3D-printed tissue phantoms, which mimic living tissue properties for non-invasive validation of photonic devices in diagnostics. The study explores how small data techniques like transfer learning, bootstrapping, regularization, and K-fold cross-validation can improve interpretations from small datasets, enhance predictive capabilities, and address data scarcity issues.\",\"PeriodicalId\":198425,\"journal\":{\"name\":\"Other Conferences\",\"volume\":\"53 5\",\"pages\":\"131870J - 131870J-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Other Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3021367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3021367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习算法传统上依赖大型数据集来实现高准确性。然而,现在该领域的进步使得人们能够利用较小的数据集探索利基工程领域的解决方案。本文回顾了使用小型数据集的挑战和解决方案,尤其是在光电子学和生物医学工程领域。在光电子学领域,小型数据集是设计和验证光子系统的关键,因为使用活体组织进行实验可能成本高昂且十分复杂。文章讨论了利用机器学习模型优化光子响应模拟和系统校准,这些模型对较小的数据集非常有效。在生物医学工程领域,重点是三维打印组织模型,它可以模拟活体组织的特性,对诊断中的光子设备进行无创验证。该研究探讨了转移学习、引导、正则化和 K 倍交叉验证等小数据技术如何改善小数据集的解释、增强预测能力并解决数据稀缺问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small data in model calibration for optical tissue phantom validation
Machine learning algorithms traditionally rely on large datasets for high accuracy. However, advances in the field are now enabling the exploration of solutions in niche engineering areas with smaller datasets. This article reviews the challenges and solutions in working with small datasets, particularly in optoelectronics and biomedical engineering. In optoelectronics, small datasets are key for designing and validating photonic systems, as experiments with living tissues can be costly and complex. The article discusses optimizing photonic response simulations and system calibration using machine learning models that are effective with smaller datasets. In biomedical engineering, the focus is on 3D-printed tissue phantoms, which mimic living tissue properties for non-invasive validation of photonic devices in diagnostics. The study explores how small data techniques like transfer learning, bootstrapping, regularization, and K-fold cross-validation can improve interpretations from small datasets, enhance predictive capabilities, and address data scarcity issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small data in model calibration for optical tissue phantom validation New approaches of supersmooth surfaces diagnostics by using carbon nanoparticles Uses of 3D printing technologies in opto-mechanics and opto-mechatronics for laboratory instruments Integrated approach to precision instrumentation: design, modeling, and experimental validation of a compliant mechanical amplifier for laser scalpel prototype Laser-induced periodic surface structures on TiAl6V4 surfaces by picosecond laser processing for dental abutments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1