用于高效氧气进化反应的 ZnS/In2Te3 异质结构协同工程

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Ceramic Technology Pub Date : 2024-06-12 DOI:10.1111/ijac.14823
Asma A. Alothman, Ome Parkash Kumar, Muhammad Madni, Imran Ahmad, Saikh Mohammad, Shahroz Saleem, Abdul Ghafoor Abid
{"title":"用于高效氧气进化反应的 ZnS/In2Te3 异质结构协同工程","authors":"Asma A. Alothman,&nbsp;Ome Parkash Kumar,&nbsp;Muhammad Madni,&nbsp;Imran Ahmad,&nbsp;Saikh Mohammad,&nbsp;Shahroz Saleem,&nbsp;Abdul Ghafoor Abid","doi":"10.1111/ijac.14823","DOIUrl":null,"url":null,"abstract":"<p>The potential of electrochemical water splitting to tackle energy and environmental issues has garnered substantial interest. In the present work, an effective ZnS/In<sub>2</sub>Te<sub>3</sub> has been constructed by hydrothermal support on a stainless-steel strip and explored for oxygen evolution. The addition of ZnS modifies the band structure of In<sub>2</sub>Te<sub>3</sub> and enhances its specific conductivity and capacitance on an intrinsic level, making rapid ion transportation. The optimized ZnS/In<sub>2</sub>Te<sub>3</sub> displayed efficient oxygen evolution reaction (OER) performance with an overpotential of 228 mV and a Tafel slope of 111 mV dec<sup>−1</sup> with cyclic activity up to 1000 cycles in 1 M KOH solution. ZnS/In<sub>2</sub>Te<sub>3</sub> has a large surface area (28 m<sup>3</sup>g<sup>−1</sup>) and a charge capacitance of (.037 mF), according to studies using Brunauer–Emmett–Teller and double-layer capacitance. Combining several strategies improves overall electrochemical performance of ZnS/In<sub>2</sub>Te<sub>3</sub>, making it a promising option for use in state-of-the-art OER.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergetic engineering of ZnS/In2Te3 heterostructure for efficient oxygen evolution reaction\",\"authors\":\"Asma A. Alothman,&nbsp;Ome Parkash Kumar,&nbsp;Muhammad Madni,&nbsp;Imran Ahmad,&nbsp;Saikh Mohammad,&nbsp;Shahroz Saleem,&nbsp;Abdul Ghafoor Abid\",\"doi\":\"10.1111/ijac.14823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The potential of electrochemical water splitting to tackle energy and environmental issues has garnered substantial interest. In the present work, an effective ZnS/In<sub>2</sub>Te<sub>3</sub> has been constructed by hydrothermal support on a stainless-steel strip and explored for oxygen evolution. The addition of ZnS modifies the band structure of In<sub>2</sub>Te<sub>3</sub> and enhances its specific conductivity and capacitance on an intrinsic level, making rapid ion transportation. The optimized ZnS/In<sub>2</sub>Te<sub>3</sub> displayed efficient oxygen evolution reaction (OER) performance with an overpotential of 228 mV and a Tafel slope of 111 mV dec<sup>−1</sup> with cyclic activity up to 1000 cycles in 1 M KOH solution. ZnS/In<sub>2</sub>Te<sub>3</sub> has a large surface area (28 m<sup>3</sup>g<sup>−1</sup>) and a charge capacitance of (.037 mF), according to studies using Brunauer–Emmett–Teller and double-layer capacitance. Combining several strategies improves overall electrochemical performance of ZnS/In<sub>2</sub>Te<sub>3</sub>, making it a promising option for use in state-of-the-art OER.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14823\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14823","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

电化学分水技术在解决能源和环境问题方面的潜力引起了人们的极大兴趣。在本研究中,通过在不锈钢带材上进行水热支撑,构建了一种有效的 ZnS/In2Te3 材料,并对其进行了氧进化探索。ZnS 的加入改变了 In2Te3 的能带结构,并从本质上提高了其比电导率和电容,从而实现了离子的快速传输。优化后的 ZnS/In2Te3 在 1 M KOH 溶液中显示出高效的氧进化反应(OER)性能,过电位为 228 mV,塔菲尔斜率为 111 mV dec-1,循环活性高达 1000 次。根据使用布鲁瑙尔-艾美特-泰勒和双层电容法进行的研究,ZnS/In2Te3 具有较大的表面积(28 m3g-1)和(.037 mF)的电荷电容。将几种策略结合起来可提高 ZnS/In2Te3 的整体电化学性能,使其成为最先进的 OER 中的一个有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergetic engineering of ZnS/In2Te3 heterostructure for efficient oxygen evolution reaction

The potential of electrochemical water splitting to tackle energy and environmental issues has garnered substantial interest. In the present work, an effective ZnS/In2Te3 has been constructed by hydrothermal support on a stainless-steel strip and explored for oxygen evolution. The addition of ZnS modifies the band structure of In2Te3 and enhances its specific conductivity and capacitance on an intrinsic level, making rapid ion transportation. The optimized ZnS/In2Te3 displayed efficient oxygen evolution reaction (OER) performance with an overpotential of 228 mV and a Tafel slope of 111 mV dec−1 with cyclic activity up to 1000 cycles in 1 M KOH solution. ZnS/In2Te3 has a large surface area (28 m3g−1) and a charge capacitance of (.037 mF), according to studies using Brunauer–Emmett–Teller and double-layer capacitance. Combining several strategies improves overall electrochemical performance of ZnS/In2Te3, making it a promising option for use in state-of-the-art OER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
期刊最新文献
Contents The crack‐healing behavior and oxidation resistance of Al2O3–ZrO2–SiB6 ceramic at 600–1200°C Fabrication and characterization of silicon carbide ceramic filtration media via recycling of waste red mud Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration The effect of MnO2 additive on the microstructure and mechanical properties of magnesium aluminate spinel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1