奇异扰动对流扩散方程弱耦合系统的近二阶参数稳健数值技术分析

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Mathematical Chemistry Pub Date : 2024-06-12 DOI:10.1007/s10910-024-01634-4
S. Chandra Sekhara Rao, Varsha Srivastava
{"title":"奇异扰动对流扩散方程弱耦合系统的近二阶参数稳健数值技术分析","authors":"S. Chandra Sekhara Rao,&nbsp;Varsha Srivastava","doi":"10.1007/s10910-024-01634-4","DOIUrl":null,"url":null,"abstract":"<div><p>We present a parameter-robust finite difference method for solving a system of weakly coupled singularly perturbed convection-diffusion equations. The diffusion coefficient of each equation is a small distinct positive parameter. Due to this, the solution to the system has, in general, overlapping boundary layers. The problem is discretized using a particular combination of a compact second-order difference scheme and a central difference scheme on a piecewise-uniform Shishkin mesh. The convergence analysis is given, and the method is shown to have almost second-order uniform convergence in the maximum norm with respect to the perturbation parameters. The results of numerical experiments are in agreement with the theoretical outcomes.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 8","pages":"1834 - 1859"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of an almost second-order parameter-robust numerical technique for a weakly coupled system of singularly perturbed convection-diffusion equations\",\"authors\":\"S. Chandra Sekhara Rao,&nbsp;Varsha Srivastava\",\"doi\":\"10.1007/s10910-024-01634-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a parameter-robust finite difference method for solving a system of weakly coupled singularly perturbed convection-diffusion equations. The diffusion coefficient of each equation is a small distinct positive parameter. Due to this, the solution to the system has, in general, overlapping boundary layers. The problem is discretized using a particular combination of a compact second-order difference scheme and a central difference scheme on a piecewise-uniform Shishkin mesh. The convergence analysis is given, and the method is shown to have almost second-order uniform convergence in the maximum norm with respect to the perturbation parameters. The results of numerical experiments are in agreement with the theoretical outcomes.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":\"62 8\",\"pages\":\"1834 - 1859\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-024-01634-4\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01634-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种参数可靠的有限差分法,用于求解弱耦合奇异扰动对流扩散方程系统。每个方程的扩散系数都是一个很小的独立正参数。因此,该系统的解一般会有重叠的边界层。在片状均匀 Shishkin 网格上,采用紧凑二阶差分方案和中心差分方案的特殊组合对问题进行离散化处理。给出了收敛性分析,结果表明该方法在最大规范上几乎具有与扰动参数相关的二阶均匀收敛性。数值实验结果与理论结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of an almost second-order parameter-robust numerical technique for a weakly coupled system of singularly perturbed convection-diffusion equations

We present a parameter-robust finite difference method for solving a system of weakly coupled singularly perturbed convection-diffusion equations. The diffusion coefficient of each equation is a small distinct positive parameter. Due to this, the solution to the system has, in general, overlapping boundary layers. The problem is discretized using a particular combination of a compact second-order difference scheme and a central difference scheme on a piecewise-uniform Shishkin mesh. The convergence analysis is given, and the method is shown to have almost second-order uniform convergence in the maximum norm with respect to the perturbation parameters. The results of numerical experiments are in agreement with the theoretical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
期刊最新文献
Guest editorial for the special collection of mathematical chemistry papers Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects A first-rate fourteenth-order phase-fitting approach to solving chemical problems On the uniqueness of continuous and discrete hard models of NMR-spectra Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1