通过机器学习增强型数据采集快速应对输水管网的压力变化

Hyunjun Kim, K. Jung, S. Lee, E. Jeong
{"title":"通过机器学习增强型数据采集快速应对输水管网的压力变化","authors":"Hyunjun Kim, K. Jung, S. Lee, E. Jeong","doi":"10.2166/aqua.2024.030","DOIUrl":null,"url":null,"abstract":"\n \n This study investigates rapid dynamic pressure variations in water distribution networks due to critical incidents such as pipe bursts and valve operations. We developed and implemented a machine learning (ML)-based methodology that surpasses traditional slow cycles of pressure data acquisition, facilitating the efficient capture of transient phenomena. Employing the Orion ML library, which features advanced algorithms including long short-term memory dynamic threshold, autoencoder with regression, and time-series anomaly detection using generative adversarial networks, we engineered a system that dynamically adjusts data acquisition frequencies to enhance the detection and analysis of anomalies indicative of system failures. The system's performance was extensively tested using a pilot-scale water distribution network across diverse operational conditions, yielding significant enhancements in detecting leaks, blockages, and other anomalies. The effectiveness of this approach was further confirmed in real-world settings, demonstrating its operational feasibility and potential for integration into existing water distribution infrastructures. By optimizing data acquisition based on learned data patterns and detected anomalies, our approach introduces a novel solution to the conventionally resource-intensive practice of high-frequency monitoring. This study underscores the critical role of advanced ML techniques in water network management and explores future possibilities for adaptive monitoring systems across various infrastructural applications.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"56 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid response to pressure variations in water distribution networks through machine learning-enhanced data acquisition\",\"authors\":\"Hyunjun Kim, K. Jung, S. Lee, E. Jeong\",\"doi\":\"10.2166/aqua.2024.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study investigates rapid dynamic pressure variations in water distribution networks due to critical incidents such as pipe bursts and valve operations. We developed and implemented a machine learning (ML)-based methodology that surpasses traditional slow cycles of pressure data acquisition, facilitating the efficient capture of transient phenomena. Employing the Orion ML library, which features advanced algorithms including long short-term memory dynamic threshold, autoencoder with regression, and time-series anomaly detection using generative adversarial networks, we engineered a system that dynamically adjusts data acquisition frequencies to enhance the detection and analysis of anomalies indicative of system failures. The system's performance was extensively tested using a pilot-scale water distribution network across diverse operational conditions, yielding significant enhancements in detecting leaks, blockages, and other anomalies. The effectiveness of this approach was further confirmed in real-world settings, demonstrating its operational feasibility and potential for integration into existing water distribution infrastructures. By optimizing data acquisition based on learned data patterns and detected anomalies, our approach introduces a novel solution to the conventionally resource-intensive practice of high-frequency monitoring. This study underscores the critical role of advanced ML techniques in water network management and explores future possibilities for adaptive monitoring systems across various infrastructural applications.\",\"PeriodicalId\":513288,\"journal\":{\"name\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"volume\":\"56 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2024.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了配水管网中因管道爆裂和阀门操作等突发事件引起的快速动态压力变化。我们开发并实施了一种基于机器学习(ML)的方法,该方法超越了传统的缓慢压力数据采集周期,有助于有效捕捉瞬态现象。Orion ML 库采用了包括长短期记忆动态阈值、带回归的自动编码器和使用生成式对抗网络的时间序列异常检测在内的先进算法,我们设计的系统可动态调整数据采集频率,以加强对表明系统故障的异常情况的检测和分析。该系统的性能在不同运行条件下的试点规模配水管网中进行了广泛测试,在检测泄漏、堵塞和其他异常情况方面取得了显著提高。这种方法的有效性在实际环境中得到了进一步证实,证明了其操作可行性以及集成到现有配水基础设施中的潜力。通过根据学习到的数据模式和检测到的异常情况优化数据采集,我们的方法为传统的资源密集型高频监测实践引入了一种新的解决方案。这项研究强调了先进的 ML 技术在水网管理中的关键作用,并探索了自适应监测系统在各种基础设施应用中的未来可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid response to pressure variations in water distribution networks through machine learning-enhanced data acquisition
This study investigates rapid dynamic pressure variations in water distribution networks due to critical incidents such as pipe bursts and valve operations. We developed and implemented a machine learning (ML)-based methodology that surpasses traditional slow cycles of pressure data acquisition, facilitating the efficient capture of transient phenomena. Employing the Orion ML library, which features advanced algorithms including long short-term memory dynamic threshold, autoencoder with regression, and time-series anomaly detection using generative adversarial networks, we engineered a system that dynamically adjusts data acquisition frequencies to enhance the detection and analysis of anomalies indicative of system failures. The system's performance was extensively tested using a pilot-scale water distribution network across diverse operational conditions, yielding significant enhancements in detecting leaks, blockages, and other anomalies. The effectiveness of this approach was further confirmed in real-world settings, demonstrating its operational feasibility and potential for integration into existing water distribution infrastructures. By optimizing data acquisition based on learned data patterns and detected anomalies, our approach introduces a novel solution to the conventionally resource-intensive practice of high-frequency monitoring. This study underscores the critical role of advanced ML techniques in water network management and explores future possibilities for adaptive monitoring systems across various infrastructural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic performance of TiO2 modified with graphene derivatives and Fe (Ⅲ) at different thermal reduction temperatures Why do people save water? A systematic review of household water consumption behaviour in times of water availability uncertainty The socio-technical short-term implications of drinking water hoarding on supply reliability Hydraulic investigation of flows at high-head overflow spillway with multiple aerators: a physical and numerical study of Mohmand Dam, Pakistan Water quality ensemble prediction model for the urban water reservoir based on the hybrid long short-term memory (LSTM) network analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1