Kat Cantner, G. Soreghan, Lily S. Pfeifer, K. Benison, Amy Myrbo
{"title":"通往潘吉亚气候过去的时光机","authors":"Kat Cantner, G. Soreghan, Lily S. Pfeifer, K. Benison, Amy Myrbo","doi":"10.3389/frym.2024.1254286","DOIUrl":null,"url":null,"abstract":"If you could time travel to the central U.S. 300 million years ago, you would find yourself at the equator of the supercontinent Pangea. At first you might enjoy a warm climate, surrounded by seas filled with life. But, after some millions of years, the seas would vanish as the climate turned increasingly hot, dry, and hostile. Billowing dust would engulf you, and nearly all life on Earth would vanish in an event called the Great Dying. How do we know? Geoscientists reconstruct past landscapes and climates by drilling into ancient sediments—tiny grains of sand and silt. These tiny particles tell us how fast the mountains rose and which way the wind blew. Microscopic fossils reveal water and air temperatures. And miniature bubbles trapped in salt preserve actual fossil water, from nearly 300 million years ago. Travel back in time with us to explore the Great Dying.","PeriodicalId":503754,"journal":{"name":"Frontiers for Young Minds","volume":"27 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time Machine to Pangea’s Climate Past\",\"authors\":\"Kat Cantner, G. Soreghan, Lily S. Pfeifer, K. Benison, Amy Myrbo\",\"doi\":\"10.3389/frym.2024.1254286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If you could time travel to the central U.S. 300 million years ago, you would find yourself at the equator of the supercontinent Pangea. At first you might enjoy a warm climate, surrounded by seas filled with life. But, after some millions of years, the seas would vanish as the climate turned increasingly hot, dry, and hostile. Billowing dust would engulf you, and nearly all life on Earth would vanish in an event called the Great Dying. How do we know? Geoscientists reconstruct past landscapes and climates by drilling into ancient sediments—tiny grains of sand and silt. These tiny particles tell us how fast the mountains rose and which way the wind blew. Microscopic fossils reveal water and air temperatures. And miniature bubbles trapped in salt preserve actual fossil water, from nearly 300 million years ago. Travel back in time with us to explore the Great Dying.\",\"PeriodicalId\":503754,\"journal\":{\"name\":\"Frontiers for Young Minds\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers for Young Minds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frym.2024.1254286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers for Young Minds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frym.2024.1254286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
If you could time travel to the central U.S. 300 million years ago, you would find yourself at the equator of the supercontinent Pangea. At first you might enjoy a warm climate, surrounded by seas filled with life. But, after some millions of years, the seas would vanish as the climate turned increasingly hot, dry, and hostile. Billowing dust would engulf you, and nearly all life on Earth would vanish in an event called the Great Dying. How do we know? Geoscientists reconstruct past landscapes and climates by drilling into ancient sediments—tiny grains of sand and silt. These tiny particles tell us how fast the mountains rose and which way the wind blew. Microscopic fossils reveal water and air temperatures. And miniature bubbles trapped in salt preserve actual fossil water, from nearly 300 million years ago. Travel back in time with us to explore the Great Dying.