利用基于图的学习策略从卫星图像时间序列预测水资源

Corentin Dufourg, Charlotte Pelletier, Stéphane May, Sébastien Lefèvre
{"title":"利用基于图的学习策略从卫星图像时间序列预测水资源","authors":"Corentin Dufourg, Charlotte Pelletier, Stéphane May, Sébastien Lefèvre","doi":"10.5194/isprs-archives-xlviii-2-2024-81-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In the context of climate change, it is important to monitor the dynamics of the Earth’s surface in order to prevent extreme weather phenomena such as floods and droughts. To this end, global meteorological forecasting is constantly being improved, with a recent breakthrough in deep learning methods. In this paper, we propose to adapt a recent weather forecasting architecture, called GraphCast, to a water resources forecasting task using high-resolution satellite image time series (SITS). Based on an intermediate mesh, the data geometry used within the network is adapted to match high spatial resolution data acquired in two-dimensional space. In particular, we introduce a predefined irregular mesh based on a segmentation map to guide the network’s predictions and bring more detail to specific areas. We conduct experiments to forecast water resources index two months ahead on lakes and rivers in Italy and Spain. We demonstrate that our adaptation of GraphCast outperforms the existing frameworks designed for SITS analysis. It also showed stable results for the main hyperparameter, i.e., the number of superpixels. We conclude that adapting global meteorological forecasting methods to SITS settings can be beneficial for high spatial resolution predictions.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"16 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting water resources from satellite image time series using a graph-based learning strategy\",\"authors\":\"Corentin Dufourg, Charlotte Pelletier, Stéphane May, Sébastien Lefèvre\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-81-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In the context of climate change, it is important to monitor the dynamics of the Earth’s surface in order to prevent extreme weather phenomena such as floods and droughts. To this end, global meteorological forecasting is constantly being improved, with a recent breakthrough in deep learning methods. In this paper, we propose to adapt a recent weather forecasting architecture, called GraphCast, to a water resources forecasting task using high-resolution satellite image time series (SITS). Based on an intermediate mesh, the data geometry used within the network is adapted to match high spatial resolution data acquired in two-dimensional space. In particular, we introduce a predefined irregular mesh based on a segmentation map to guide the network’s predictions and bring more detail to specific areas. We conduct experiments to forecast water resources index two months ahead on lakes and rivers in Italy and Spain. We demonstrate that our adaptation of GraphCast outperforms the existing frameworks designed for SITS analysis. It also showed stable results for the main hyperparameter, i.e., the number of superpixels. We conclude that adapting global meteorological forecasting methods to SITS settings can be beneficial for high spatial resolution predictions.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"16 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-81-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-81-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在气候变化的背景下,监测地球表面的动态以预防洪水和干旱等极端天气现象非常重要。为此,随着深度学习方法的最新突破,全球气象预报正在不断改进。在本文中,我们提出利用高分辨率卫星图像时间序列(SITS),将一种名为 GraphCast 的最新天气预报架构应用于水资源预报任务。基于中间网格,网络内使用的数据几何形状经过调整,以匹配在二维空间获取的高空间分辨率数据。特别是,我们在分割图的基础上引入了预定义的不规则网格,以指导网络预测,并为特定区域提供更多细节。我们提前两个月对意大利和西班牙的湖泊和河流进行了水资源指数预测实验。结果表明,我们对 GraphCast 的改进优于为 SITS 分析设计的现有框架。在主要超参数(即超像素数量)方面,它也显示出了稳定的结果。我们的结论是,根据 SITS 设置调整全球气象预报方法对高空间分辨率预测是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting water resources from satellite image time series using a graph-based learning strategy
Abstract. In the context of climate change, it is important to monitor the dynamics of the Earth’s surface in order to prevent extreme weather phenomena such as floods and droughts. To this end, global meteorological forecasting is constantly being improved, with a recent breakthrough in deep learning methods. In this paper, we propose to adapt a recent weather forecasting architecture, called GraphCast, to a water resources forecasting task using high-resolution satellite image time series (SITS). Based on an intermediate mesh, the data geometry used within the network is adapted to match high spatial resolution data acquired in two-dimensional space. In particular, we introduce a predefined irregular mesh based on a segmentation map to guide the network’s predictions and bring more detail to specific areas. We conduct experiments to forecast water resources index two months ahead on lakes and rivers in Italy and Spain. We demonstrate that our adaptation of GraphCast outperforms the existing frameworks designed for SITS analysis. It also showed stable results for the main hyperparameter, i.e., the number of superpixels. We conclude that adapting global meteorological forecasting methods to SITS settings can be beneficial for high spatial resolution predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1