{"title":"用于钠离子电池的多尺度结构 NaTi2(PO4)3 阳极,具有长循环、高等容量和宽工作温度的特点","authors":"Guobao Xu, Liyue Yang, Zhihao Yan, Zhikai Huang, Xue Li, Gencai Guo, Ye Tian, Liwen Yang, Jianyu Huang, Yaru Liang, Shulei Chou","doi":"10.1002/cey2.552","DOIUrl":null,"url":null,"abstract":"<p>Though plenty of research has been conducted to improve the low intrinsic electronic conductivity of NASICON-structured NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NTP), realizing sodium-ion batteries with high areal/volumetric capacity still remains a formidable challenge. Herein, a multiscale design from anode material to electrode structure is proposed to obtain a gadolinium-ion-doped and carbon-coated NTP composite electrode (NTP-Gd-C), in which gadolinium ion doping, oxygen vacancy, optimized structure, N-doped carbon coating, and bridging on the three-dimensional network are simultaneously achieved. In the whole electrode, the excellent hierarchical electronic/ionic conductivity and structural stability are simultaneously improved via the synergistic optimization of NTP-Gd-C. As a result, excellent electrochemical performances of NTP-Gd-C electrode with a high areal/volumetric capacity of 1.0 mAh cm<sup>−2</sup>/142.8 mAh cm<sup>−3</sup>, high rate capability (58.3 mAh g<sup>−1</sup> at 200 C), long cycle life (ultralow capacity fading of 0.004% per cycle under 10,000 cycles), and wide-temperature electrochemical performances (97.0 mAh g<sup>−1</sup> at 2 C under −20°C) are achieved. Moreover, the NTP-Gd-C//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell also delivers an excellent rate capacity of 42.0 mAh g<sup>−1</sup> at 200 C and long-term high-capacity retention of 66.2% after 4000 cycles at 20 C.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.552","citationCount":"0","resultStr":"{\"title\":\"Multiscale structural NaTi2(PO4)3 anode for sodium-ion batteries with long cycle, high areal capacity, and wide operation temperature\",\"authors\":\"Guobao Xu, Liyue Yang, Zhihao Yan, Zhikai Huang, Xue Li, Gencai Guo, Ye Tian, Liwen Yang, Jianyu Huang, Yaru Liang, Shulei Chou\",\"doi\":\"10.1002/cey2.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Though plenty of research has been conducted to improve the low intrinsic electronic conductivity of NASICON-structured NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NTP), realizing sodium-ion batteries with high areal/volumetric capacity still remains a formidable challenge. Herein, a multiscale design from anode material to electrode structure is proposed to obtain a gadolinium-ion-doped and carbon-coated NTP composite electrode (NTP-Gd-C), in which gadolinium ion doping, oxygen vacancy, optimized structure, N-doped carbon coating, and bridging on the three-dimensional network are simultaneously achieved. In the whole electrode, the excellent hierarchical electronic/ionic conductivity and structural stability are simultaneously improved via the synergistic optimization of NTP-Gd-C. As a result, excellent electrochemical performances of NTP-Gd-C electrode with a high areal/volumetric capacity of 1.0 mAh cm<sup>−2</sup>/142.8 mAh cm<sup>−3</sup>, high rate capability (58.3 mAh g<sup>−1</sup> at 200 C), long cycle life (ultralow capacity fading of 0.004% per cycle under 10,000 cycles), and wide-temperature electrochemical performances (97.0 mAh g<sup>−1</sup> at 2 C under −20°C) are achieved. Moreover, the NTP-Gd-C//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell also delivers an excellent rate capacity of 42.0 mAh g<sup>−1</sup> at 200 C and long-term high-capacity retention of 66.2% after 4000 cycles at 20 C.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.552\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.552\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.552","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
尽管人们已经开展了大量研究来改善 NASICON 结构的 NaTi2(PO4)3 (NTP)的低本征电子电导率,但实现钠离子电池的高电容/容量仍然是一项艰巨的挑战。本文提出了一种从正极材料到电极结构的多尺度设计,获得了掺钆离子和碳包覆的 NTP 复合电极(NTP-Gd-C),其中同时实现了掺钆离子、氧空位、优化结构、N-掺杂碳包覆和三维网络桥接。在整个电极中,通过 NTP-Gd-C 的协同优化,优异的分层电子/离子导电性和结构稳定性同时得到了提高。因此,NTP-Gd-C 电极实现了优异的电化学性能,具有 1.0 mAh cm-2/142.8 mAh cm-3 的高面积/体积容量、高速率能力(200 C 时 58.3 mAh g-1)、长循环寿命(10,000 次循环下每循环 0.004% 的超低容量衰减)和宽温电化学性能(-20 C 下 2 C 时 97.0 mAh g-1)。此外,NTP-Gd-C//Na3V2(PO4)3/C 全电池在 200 摄氏度时的速率容量为 42.0 mAh g-1,在 20 摄氏度时循环 4000 次后的长期高容量保持率为 66.2%。
Multiscale structural NaTi2(PO4)3 anode for sodium-ion batteries with long cycle, high areal capacity, and wide operation temperature
Though plenty of research has been conducted to improve the low intrinsic electronic conductivity of NASICON-structured NaTi2(PO4)3 (NTP), realizing sodium-ion batteries with high areal/volumetric capacity still remains a formidable challenge. Herein, a multiscale design from anode material to electrode structure is proposed to obtain a gadolinium-ion-doped and carbon-coated NTP composite electrode (NTP-Gd-C), in which gadolinium ion doping, oxygen vacancy, optimized structure, N-doped carbon coating, and bridging on the three-dimensional network are simultaneously achieved. In the whole electrode, the excellent hierarchical electronic/ionic conductivity and structural stability are simultaneously improved via the synergistic optimization of NTP-Gd-C. As a result, excellent electrochemical performances of NTP-Gd-C electrode with a high areal/volumetric capacity of 1.0 mAh cm−2/142.8 mAh cm−3, high rate capability (58.3 mAh g−1 at 200 C), long cycle life (ultralow capacity fading of 0.004% per cycle under 10,000 cycles), and wide-temperature electrochemical performances (97.0 mAh g−1 at 2 C under −20°C) are achieved. Moreover, the NTP-Gd-C//Na3V2(PO4)3/C full cell also delivers an excellent rate capacity of 42.0 mAh g−1 at 200 C and long-term high-capacity retention of 66.2% after 4000 cycles at 20 C.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.