在水下摄影测量中使用压力传感器测量地面控制点的高精度高度差

F. Menna, E. Nocerino, A. Calantropio
{"title":"在水下摄影测量中使用压力传感器测量地面控制点的高精度高度差","authors":"F. Menna, E. Nocerino, A. Calantropio","doi":"10.5194/isprs-archives-xlviii-2-2024-273-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Three-dimensional reference points (RPs) are fundamental for datum definition and metric validation in many photogrammetric applications, often used as ground control points (GCPs) to constrain the bundle adjustment solution. Nevertheless, survey operations underwater present challenges due to the physical characteristics of the water itself and the technological limitations of available instruments. Traditional methods to collect RPs underwater rely on direct geodetic measurements like slope distances, height differences, and depths from a dive computer. These methods can be time-consuming and impractical to scale up to large areas, particularly in deeper waters. This paper reports on the use of a custom-developed low-cost pressure sensor to measure depths and height differences of underwater RPs with survey-grade accuracy. Laboratory and open water tests demonstrated the method's potential, achieving an RMSEZ of less than 1 mm over a 1.5 m height range in the laboratory in static water and a sub-centimetre RMSE of relative depth differences in shallow water tests carried out in two different locations at sea with maximum significant wave height of 9 cm. The sensor proved its effectiveness also for constraining a corridor-like underwater photogrammetric survey reducing the bending of the 3D model with respect to the free network solution (RMSEZ lowered from 10 cm to less than 1 cm). The preliminary tests with the presented approach proved several advantages against other consolidated methods, including cost reduction (compared to commercial survey instruments), rapidity, safety, and accuracy, especially at depths greater than 3–5 m where other approaches (e.g., GNSS or topographic measures) cannot be applied.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"23 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-accuracy height differences using a pressure sensor for ground control points measurement in underwater photogrammetry\",\"authors\":\"F. Menna, E. Nocerino, A. Calantropio\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-273-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Three-dimensional reference points (RPs) are fundamental for datum definition and metric validation in many photogrammetric applications, often used as ground control points (GCPs) to constrain the bundle adjustment solution. Nevertheless, survey operations underwater present challenges due to the physical characteristics of the water itself and the technological limitations of available instruments. Traditional methods to collect RPs underwater rely on direct geodetic measurements like slope distances, height differences, and depths from a dive computer. These methods can be time-consuming and impractical to scale up to large areas, particularly in deeper waters. This paper reports on the use of a custom-developed low-cost pressure sensor to measure depths and height differences of underwater RPs with survey-grade accuracy. Laboratory and open water tests demonstrated the method's potential, achieving an RMSEZ of less than 1 mm over a 1.5 m height range in the laboratory in static water and a sub-centimetre RMSE of relative depth differences in shallow water tests carried out in two different locations at sea with maximum significant wave height of 9 cm. The sensor proved its effectiveness also for constraining a corridor-like underwater photogrammetric survey reducing the bending of the 3D model with respect to the free network solution (RMSEZ lowered from 10 cm to less than 1 cm). The preliminary tests with the presented approach proved several advantages against other consolidated methods, including cost reduction (compared to commercial survey instruments), rapidity, safety, and accuracy, especially at depths greater than 3–5 m where other approaches (e.g., GNSS or topographic measures) cannot be applied.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-273-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-273-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在许多摄影测量应用中,三维参考点(RPs)是基准定义和度量验证的基础,通常用作地面控制点(GCPs)来约束捆绑调整解决方案。然而,由于水本身的物理特性和现有仪器的技术限制,水下勘测作业面临着挑战。传统的水下 RPs 采集方法依赖于直接的大地测量,如斜坡距离、高差和潜水计算机的深度。这些方法既耗时,又不适合大面积推广,尤其是在深水区。本文报告了使用定制开发的低成本压力传感器测量水下 RP 的深度和高差的情况,测量精度达到了勘测级。实验室和开放水域测试证明了该方法的潜力,在实验室静态水域 1.5 米高度范围内的 RMSEZ 小于 1 毫米,在最大显著波高为 9 厘米的海上两个不同地点进行的浅水测试中,相对深度差的 RMSE 值小于 1 厘米。事实证明,该传感器还能有效限制类似走廊的水下摄影测量,减少三维模型相对于自由网络解决方案的弯曲(RMSEZ 从 10 厘米降至 1 厘米以下)。与其他综合方法相比,所提出方法的初步测试证明了其若干优势,包括降低成本(与商用勘测仪器相比)、快速、安全和精确,特别是在深度超过 3-5 米时,其他方法(如全球导航卫星系统或地形测量)无法应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-accuracy height differences using a pressure sensor for ground control points measurement in underwater photogrammetry
Abstract. Three-dimensional reference points (RPs) are fundamental for datum definition and metric validation in many photogrammetric applications, often used as ground control points (GCPs) to constrain the bundle adjustment solution. Nevertheless, survey operations underwater present challenges due to the physical characteristics of the water itself and the technological limitations of available instruments. Traditional methods to collect RPs underwater rely on direct geodetic measurements like slope distances, height differences, and depths from a dive computer. These methods can be time-consuming and impractical to scale up to large areas, particularly in deeper waters. This paper reports on the use of a custom-developed low-cost pressure sensor to measure depths and height differences of underwater RPs with survey-grade accuracy. Laboratory and open water tests demonstrated the method's potential, achieving an RMSEZ of less than 1 mm over a 1.5 m height range in the laboratory in static water and a sub-centimetre RMSE of relative depth differences in shallow water tests carried out in two different locations at sea with maximum significant wave height of 9 cm. The sensor proved its effectiveness also for constraining a corridor-like underwater photogrammetric survey reducing the bending of the 3D model with respect to the free network solution (RMSEZ lowered from 10 cm to less than 1 cm). The preliminary tests with the presented approach proved several advantages against other consolidated methods, including cost reduction (compared to commercial survey instruments), rapidity, safety, and accuracy, especially at depths greater than 3–5 m where other approaches (e.g., GNSS or topographic measures) cannot be applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1