{"title":"基于全碳酸盐电解质的固相转换高能量密度锂离子电池","authors":"T. Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, D. Okuda, Masashi Ishikawa","doi":"10.1002/cey2.585","DOIUrl":null,"url":null,"abstract":"Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully carbonate‐electrolyte‐based high‐energy‐density Li–S batteries with solid‐phase conversion\",\"authors\":\"T. Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, D. Okuda, Masashi Ishikawa\",\"doi\":\"10.1002/cey2.585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.585\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.585","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fully carbonate‐electrolyte‐based high‐energy‐density Li–S batteries with solid‐phase conversion
Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.