基于全碳酸盐电解质的固相转换高能量密度锂离子电池

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-06-11 DOI:10.1002/cey2.585
T. Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, D. Okuda, Masashi Ishikawa
{"title":"基于全碳酸盐电解质的固相转换高能量密度锂离子电池","authors":"T. Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, D. Okuda, Masashi Ishikawa","doi":"10.1002/cey2.585","DOIUrl":null,"url":null,"abstract":"Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully carbonate‐electrolyte‐based high‐energy‐density Li–S batteries with solid‐phase conversion\",\"authors\":\"T. Hakari, Yuto Kameoka, Kaihei Kishida, Shinji Ozaki, Chihiro Murata, Minako Deguchi, Ryo Harada, Tomoki Fujisawa, Yusuke Mizuno, Heisuke Nishikawa, Tomoyuki Tamura, Yiqun Wang, Hikari Takahara, Takashi Aoki, Tokuo Inamasu, D. Okuda, Masashi Ishikawa\",\"doi\":\"10.1002/cey2.585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.585\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.585","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于碳酸盐电解质的固相转换锂硫(Li-S)电池具有良好的安全性和可扩展性,但其可逆容量有限。此外,大型袋装电池正在为大规模生产铺平道路。本研究展示了使用碳酸乙烯酯(VC)原位形成固态电解质间相(SEI)作为保护层的方法,突出了其工业适应性。在阴极颗粒内部形成的石墨化聚-VC SEI 作为纳米级离子传导路径,与传统的表面保护层一起实现了高可逆容量。此外,从含氟碳酸乙烯酯中提取的 LiF 作为辅助溶剂可减轻聚-VC 的严重溶解,从而实现高倍率性能和长循环寿命。我们成功开发了一种 8 Ah 的大型袋装电池,根据电池重量计算,其能量密度高达 400 Wh kg-1。这项工作证明了原位形成保护层的大规模锂-S 电池的高性能,是未来应用的一种可扩展技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully carbonate‐electrolyte‐based high‐energy‐density Li–S batteries with solid‐phase conversion
Carbonate‐electrolyte‐based lithium–sulfur (Li–S) batteries with solid‐phase conversion offer promising safety and scalability, but their reversible capacities are limited. In addition, large‐format pouch cells are paving the way for large‐scale production. This study demonstrates the in situ formation of a solid‐electrolyte interphase (SEI) as a protective layer using vinylene carbonate (VC), highlighting its industrial adaptability. A high reversible capacity is achieved by the lithiated poly‐VC SEI formed inside the cathode particles as a nanoscale ionic conduction path, along with the traditional surface protective layer. Furthermore, the severe dissolution of poly‐VC is mitigated by LiF derived from fluorine ethylene carbonate as a co‐solvent, enabling high rate performance and a long cycle life. A large 8 Ah pouch cell is successfully developed, which shows a high energy density of 400 Wh kg−1 based on the cell weight. This work demonstrates the high performance of large‐scale Li–S batteries with the in situ formation of a protective layer as a scalable technique for future applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1