分析铸钢过程中 "原位 "获得的 Fe-TiC 型复合层的碎裂现象

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Foundry Engineering Pub Date : 2024-06-11 DOI:10.24425/afe.2024.149280
J. Marosz, S. Sobula
{"title":"分析铸钢过程中 \"原位 \"获得的 Fe-TiC 型复合层的碎裂现象","authors":"J. Marosz, S. Sobula","doi":"10.24425/afe.2024.149280","DOIUrl":null,"url":null,"abstract":"A method for fabrication of a composite layer on the surface of a steel casting using coating containing TiC substrates was presented. The reaction of the synthesis of the ceramic phase was based on the SHS method (Self-propagating High-temperature Synthesis) and was triggered by the heat of molten steel. High hardness titanium carbide ceramic phases were obtained, which strengthened the base material improving its performance properties presented in this article. Microstructural examinations carried out by light microscopy (LM) on the in-situ produced composite layers showed that the layers were the products of reaction of the TiC synthesis – the phenomenon called “fragmentation” by the authors of study. The examinations carried out by scanning electron microscopy (SEM) have revealed the presence of spheroidal precipitated and free of impurities. The presence of titanium carbide was twofold increase in hardness in the area of the composite layer as compared to the base alloy which was carbon cast steel.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Fragmentation Phenomenon of Composite Layers of Fe-TiC Type Obtained “in situ” in Steel Casting\",\"authors\":\"J. Marosz, S. Sobula\",\"doi\":\"10.24425/afe.2024.149280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for fabrication of a composite layer on the surface of a steel casting using coating containing TiC substrates was presented. The reaction of the synthesis of the ceramic phase was based on the SHS method (Self-propagating High-temperature Synthesis) and was triggered by the heat of molten steel. High hardness titanium carbide ceramic phases were obtained, which strengthened the base material improving its performance properties presented in this article. Microstructural examinations carried out by light microscopy (LM) on the in-situ produced composite layers showed that the layers were the products of reaction of the TiC synthesis – the phenomenon called “fragmentation” by the authors of study. The examinations carried out by scanning electron microscopy (SEM) have revealed the presence of spheroidal precipitated and free of impurities. The presence of titanium carbide was twofold increase in hardness in the area of the composite layer as compared to the base alloy which was carbon cast steel.\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2024.149280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2024.149280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用含 TiC 基底涂层在钢铸件表面制造复合层的方法。陶瓷相的合成反应基于 SHS 法(自蔓延高温合成法),由熔融钢水的热量引发。结果获得了高硬度的碳化钛陶瓷相,从而增强了基体材料的强度,提高了其性能。用光学显微镜(LM)对原位生产的复合材料层进行的微观结构检查显示,这些层是碳化钛合成反应的产物--研究作者称这种现象为 "破碎"。用扫描电子显微镜(SEM)进行的检查显示,复合层呈球状沉淀,不含杂质。与碳铸钢基合金相比,碳化钛的存在使复合层区域的硬度提高了两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Fragmentation Phenomenon of Composite Layers of Fe-TiC Type Obtained “in situ” in Steel Casting
A method for fabrication of a composite layer on the surface of a steel casting using coating containing TiC substrates was presented. The reaction of the synthesis of the ceramic phase was based on the SHS method (Self-propagating High-temperature Synthesis) and was triggered by the heat of molten steel. High hardness titanium carbide ceramic phases were obtained, which strengthened the base material improving its performance properties presented in this article. Microstructural examinations carried out by light microscopy (LM) on the in-situ produced composite layers showed that the layers were the products of reaction of the TiC synthesis – the phenomenon called “fragmentation” by the authors of study. The examinations carried out by scanning electron microscopy (SEM) have revealed the presence of spheroidal precipitated and free of impurities. The presence of titanium carbide was twofold increase in hardness in the area of the composite layer as compared to the base alloy which was carbon cast steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
期刊最新文献
Casting Production in Poland Versus European Trends in 21st Century Effect of Composition and Pouring Temperature of Cu-Sn on Fluidity and Mechanical Properties of Investment Casting Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application Abrasive Wear Resistance of Nodular Cast Iron After Selected Surface Heat and Thermochemical Treatment Processes Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1