Anbazhagan Rajesh, Venkatesh Sri Hariny, Arunachalam Sumathi
{"title":"热带芽孢杆菌对可持续蛭石混凝土机械性能、耐久性能和裂缝修复性能的影响","authors":"Anbazhagan Rajesh, Venkatesh Sri Hariny, Arunachalam Sumathi","doi":"10.1007/s42235-024-00546-y","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable cement-based concrete materials are primarily used for construction, among which vermiculite as lightweight fine aggregate gains more future development prospect. First, a bacterial solution was sprayed over vermiculite and wrapped using calcium sulphoaluminate (CSA) cement to replace with fine aggregate in concrete. Secondly, based on a preliminary test on compressive strength results, 10% of Ground Granulated Blast Furnace Slag (GGBS) and a healing solution proportion of 9:1 was selected for preparing self-healing concrete. The fine aggregate was replaced in concrete using vermiculite in 0%, 5%, 10% and 15% and the findings suggest that bacterial vermiculite replacement should be at most 5% to achieve better results in strength and durable properties. The strength enhancement observed for compressive strength, strength regain, split tensile strength, flexural strength, and ultrasonic pulse velocity were 29.22%, 45.5%, 34.02%, 28.03% and 41.4% respectively. Surface crack healing at 7, 14 and 28 days of BIVC was 38.23%, 58.82% and 79.41%, which is 3–4% lower than internal crack healing. Microstructural analysis by Scanning Electron Microscopy (SEM), X-Ray Diffractometer (XRD), and Energy Dispersive Spectroscopy (EDS) reveals the existence of calcite, and it was formed due to the bio-mineral action of bacteria with available nutrients in sustainable concrete.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1987 - 1999"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Bacillus tropicus on Mechanical, Durable and Crack Remediation Properties in Sustainable Vermiculite Concrete\",\"authors\":\"Anbazhagan Rajesh, Venkatesh Sri Hariny, Arunachalam Sumathi\",\"doi\":\"10.1007/s42235-024-00546-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable cement-based concrete materials are primarily used for construction, among which vermiculite as lightweight fine aggregate gains more future development prospect. First, a bacterial solution was sprayed over vermiculite and wrapped using calcium sulphoaluminate (CSA) cement to replace with fine aggregate in concrete. Secondly, based on a preliminary test on compressive strength results, 10% of Ground Granulated Blast Furnace Slag (GGBS) and a healing solution proportion of 9:1 was selected for preparing self-healing concrete. The fine aggregate was replaced in concrete using vermiculite in 0%, 5%, 10% and 15% and the findings suggest that bacterial vermiculite replacement should be at most 5% to achieve better results in strength and durable properties. The strength enhancement observed for compressive strength, strength regain, split tensile strength, flexural strength, and ultrasonic pulse velocity were 29.22%, 45.5%, 34.02%, 28.03% and 41.4% respectively. Surface crack healing at 7, 14 and 28 days of BIVC was 38.23%, 58.82% and 79.41%, which is 3–4% lower than internal crack healing. Microstructural analysis by Scanning Electron Microscopy (SEM), X-Ray Diffractometer (XRD), and Energy Dispersive Spectroscopy (EDS) reveals the existence of calcite, and it was formed due to the bio-mineral action of bacteria with available nutrients in sustainable concrete.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1987 - 1999\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00546-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00546-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance of Bacillus tropicus on Mechanical, Durable and Crack Remediation Properties in Sustainable Vermiculite Concrete
Sustainable cement-based concrete materials are primarily used for construction, among which vermiculite as lightweight fine aggregate gains more future development prospect. First, a bacterial solution was sprayed over vermiculite and wrapped using calcium sulphoaluminate (CSA) cement to replace with fine aggregate in concrete. Secondly, based on a preliminary test on compressive strength results, 10% of Ground Granulated Blast Furnace Slag (GGBS) and a healing solution proportion of 9:1 was selected for preparing self-healing concrete. The fine aggregate was replaced in concrete using vermiculite in 0%, 5%, 10% and 15% and the findings suggest that bacterial vermiculite replacement should be at most 5% to achieve better results in strength and durable properties. The strength enhancement observed for compressive strength, strength regain, split tensile strength, flexural strength, and ultrasonic pulse velocity were 29.22%, 45.5%, 34.02%, 28.03% and 41.4% respectively. Surface crack healing at 7, 14 and 28 days of BIVC was 38.23%, 58.82% and 79.41%, which is 3–4% lower than internal crack healing. Microstructural analysis by Scanning Electron Microscopy (SEM), X-Ray Diffractometer (XRD), and Energy Dispersive Spectroscopy (EDS) reveals the existence of calcite, and it was formed due to the bio-mineral action of bacteria with available nutrients in sustainable concrete.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.