无人机激光雷达与传统全站仪在土地测量地理空间数据采集中的精度评估比较

Rami Tamimi, C. Toth
{"title":"无人机激光雷达与传统全站仪在土地测量地理空间数据采集中的精度评估比较","authors":"Rami Tamimi, C. Toth","doi":"10.5194/isprs-archives-xlviii-2-2024-421-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate surveying of vegetated areas presents significant challenges due to obstructions that obscure visibility and compromise the precision of measurements. This paper introduces a methodology employing the DJI Zenmuse L2 Light Detection and Ranging (LiDAR) sensor, which is mounted on a Matrice 350 RTK drone. The DJI Zenmuse L2 sensor excels at capturing detailed terrain data under heavy foliage, capable of collecting 1.2 million points per second and offering five returns, thus enhancing the sensor's ability to detect multiple surface responses from a single laser pulse. In a case study conducted near a creek heavily obscured by tree coverage, traditional aerial imaging techniques are found insufficient for capturing critical topographic features, such as the creek banks. Employing LiDAR, the study aims to map these obscured features effectively. The collected data is processed using DJI Terra software, which supports the accurate projection and analysis of the LiDAR data. To validate the accuracy of the data collected from the LiDAR sensor, traditional survey methods are deployed to ground truth the data and provide an accuracy assessment. Ground control points (GCPs) are established using a GNSS receiver to provide geodetic coordinates, which then assist in setting up a total station. This total station measures vertical and horizontal angles, as well as the slope distance from the instrument to positions underneath the tree coverage on the ground. These measurements serve as checkpoints to validate the accuracy of the LiDAR data, thus ensuring the reliability of the survey. This paper discusses the potential of integrating LiDAR data with traditional surveying data, which is expected to enhance the ability of surveyors to map environmental features efficiently and accurately in complex and vegetated terrains. Through detailed procedural descriptions and expected outcomes, the study aims to provide valuable insights into the strategic application of geospatial technologies to overcome common surveying challenges.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"100 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy Assessment of UAV LiDAR Compared to Traditional Total Station for Geospatial Data Collection in Land Surveying Contexts\",\"authors\":\"Rami Tamimi, C. Toth\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-421-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Accurate surveying of vegetated areas presents significant challenges due to obstructions that obscure visibility and compromise the precision of measurements. This paper introduces a methodology employing the DJI Zenmuse L2 Light Detection and Ranging (LiDAR) sensor, which is mounted on a Matrice 350 RTK drone. The DJI Zenmuse L2 sensor excels at capturing detailed terrain data under heavy foliage, capable of collecting 1.2 million points per second and offering five returns, thus enhancing the sensor's ability to detect multiple surface responses from a single laser pulse. In a case study conducted near a creek heavily obscured by tree coverage, traditional aerial imaging techniques are found insufficient for capturing critical topographic features, such as the creek banks. Employing LiDAR, the study aims to map these obscured features effectively. The collected data is processed using DJI Terra software, which supports the accurate projection and analysis of the LiDAR data. To validate the accuracy of the data collected from the LiDAR sensor, traditional survey methods are deployed to ground truth the data and provide an accuracy assessment. Ground control points (GCPs) are established using a GNSS receiver to provide geodetic coordinates, which then assist in setting up a total station. This total station measures vertical and horizontal angles, as well as the slope distance from the instrument to positions underneath the tree coverage on the ground. These measurements serve as checkpoints to validate the accuracy of the LiDAR data, thus ensuring the reliability of the survey. This paper discusses the potential of integrating LiDAR data with traditional surveying data, which is expected to enhance the ability of surveyors to map environmental features efficiently and accurately in complex and vegetated terrains. Through detailed procedural descriptions and expected outcomes, the study aims to provide valuable insights into the strategic application of geospatial technologies to overcome common surveying challenges.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"100 27\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-421-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-421-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于障碍物遮挡了视线,影响了测量精度,因此对植被区进行精确测量是一项重大挑战。本文介绍了一种采用大疆 Zenmuse L2 光探测和测距(LiDAR)传感器的方法,该传感器安装在 Matrice 350 RTK 无人机上。大疆 Zenmuse L2 传感器擅长捕捉浓密树叶下的详细地形数据,每秒能够收集 120 万个点,并提供五次返回,从而增强了传感器从单个激光脉冲中探测多个表面响应的能力。在一项在被树木严重遮挡的小溪附近进行的案例研究中,发现传统的航空成像技术不足以捕捉到小溪河岸等关键地形特征。这项研究采用激光雷达,旨在有效绘制这些被遮挡的地物。收集到的数据使用大疆 Terra 软件进行处理,该软件支持对激光雷达数据进行精确投影和分析。为了验证从激光雷达传感器收集到的数据的准确性,采用了传统的勘测方法对数据进行地面实况调查,并提供准确性评估。使用全球导航卫星系统接收器建立地面控制点 (GCP),提供大地坐标,然后协助建立全站仪。全站仪测量垂直和水平角度,以及从仪器到地面树木覆盖下方位置的坡度距离。这些测量结果可作为验证激光雷达数据准确性的检查点,从而确保勘测的可靠性。本文讨论了将激光雷达数据与传统勘测数据整合的潜力,预计这将提高勘测人员在复杂的植被覆盖地形中高效、准确地绘制环境特征地图的能力。通过详细的程序说明和预期成果,本研究旨在为地理空间技术的战略应用提供有价值的见解,以克服常见的测量挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy Assessment of UAV LiDAR Compared to Traditional Total Station for Geospatial Data Collection in Land Surveying Contexts
Abstract. Accurate surveying of vegetated areas presents significant challenges due to obstructions that obscure visibility and compromise the precision of measurements. This paper introduces a methodology employing the DJI Zenmuse L2 Light Detection and Ranging (LiDAR) sensor, which is mounted on a Matrice 350 RTK drone. The DJI Zenmuse L2 sensor excels at capturing detailed terrain data under heavy foliage, capable of collecting 1.2 million points per second and offering five returns, thus enhancing the sensor's ability to detect multiple surface responses from a single laser pulse. In a case study conducted near a creek heavily obscured by tree coverage, traditional aerial imaging techniques are found insufficient for capturing critical topographic features, such as the creek banks. Employing LiDAR, the study aims to map these obscured features effectively. The collected data is processed using DJI Terra software, which supports the accurate projection and analysis of the LiDAR data. To validate the accuracy of the data collected from the LiDAR sensor, traditional survey methods are deployed to ground truth the data and provide an accuracy assessment. Ground control points (GCPs) are established using a GNSS receiver to provide geodetic coordinates, which then assist in setting up a total station. This total station measures vertical and horizontal angles, as well as the slope distance from the instrument to positions underneath the tree coverage on the ground. These measurements serve as checkpoints to validate the accuracy of the LiDAR data, thus ensuring the reliability of the survey. This paper discusses the potential of integrating LiDAR data with traditional surveying data, which is expected to enhance the ability of surveyors to map environmental features efficiently and accurately in complex and vegetated terrains. Through detailed procedural descriptions and expected outcomes, the study aims to provide valuable insights into the strategic application of geospatial technologies to overcome common surveying challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1