对齐地理空间矢量地图的新方法

M. A. Cherif, S. Tripodi, Y. Tarabalka, Isabelle Manighetti, L. Laurore
{"title":"对齐地理空间矢量地图的新方法","authors":"M. A. Cherif, S. Tripodi, Y. Tarabalka, Isabelle Manighetti, L. Laurore","doi":"10.5194/isprs-archives-xlviii-2-2024-55-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The surge in data across diverse fields presents an essential need for advanced techniques to merge and interpret this information. With a special emphasis on compiling geospatial data, this integration is crucial for unlocking new insights from geographic data, enhancing our ability to map and analyze trends that span across different locations and environments with more authenticity and reliability. Existing techniques have made progress in addressing data fusion; however, challenges persist in fusing and harmonizing data from different sources, scales, and modalities. This research presents a comprehensive investigation into the challenges and solutions in vector map alignment, focusing on developing methods that enhance the precision and usability of geospatial data. We explored and developed three distinct methodologies for polygonal vector map alignment: ProximityAlign, which excels in precision within urban layouts but faces computational challenges; the Optical Flow Deep Learning-Based Alignment, noted for its efficiency and adaptability; and the Epipolar Geometry-Based Alignment, effective in data-rich contexts but sensitive to data quality. In practice, the proposed approaches serve as tools to benefit from as much as possible from existing datasets while respecting a spatial reference source. It also serves as a paramount step for the data fusion task to reduce its complexity.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"89 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Approaches for Aligning Geospatial Vector Maps\",\"authors\":\"M. A. Cherif, S. Tripodi, Y. Tarabalka, Isabelle Manighetti, L. Laurore\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-55-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The surge in data across diverse fields presents an essential need for advanced techniques to merge and interpret this information. With a special emphasis on compiling geospatial data, this integration is crucial for unlocking new insights from geographic data, enhancing our ability to map and analyze trends that span across different locations and environments with more authenticity and reliability. Existing techniques have made progress in addressing data fusion; however, challenges persist in fusing and harmonizing data from different sources, scales, and modalities. This research presents a comprehensive investigation into the challenges and solutions in vector map alignment, focusing on developing methods that enhance the precision and usability of geospatial data. We explored and developed three distinct methodologies for polygonal vector map alignment: ProximityAlign, which excels in precision within urban layouts but faces computational challenges; the Optical Flow Deep Learning-Based Alignment, noted for its efficiency and adaptability; and the Epipolar Geometry-Based Alignment, effective in data-rich contexts but sensitive to data quality. In practice, the proposed approaches serve as tools to benefit from as much as possible from existing datasets while respecting a spatial reference source. It also serves as a paramount step for the data fusion task to reduce its complexity.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"89 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-55-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-55-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要不同领域的数据激增,迫切需要先进的技术来合并和解释这些信息。这种融合特别强调地理空间数据的汇编,对于从地理数据中获得新的见解、提高我们以更真实可靠的方式绘制和分析跨越不同地点和环境的趋势的能力至关重要。现有技术在解决数据融合问题方面取得了进展,但在融合和协调不同来源、规模和模式的数据方面仍存在挑战。本研究对矢量地图配准方面的挑战和解决方案进行了全面调查,重点是开发可提高地理空间数据精度和可用性的方法。我们探索并开发了三种不同的多边形矢量地图配准方法:ProximityAlign,它在城市布局中精度出众,但面临计算挑战;基于光流深度学习的配准,以其效率和适应性而著称;以及基于外极几何的配准,在数据丰富的情况下有效,但对数据质量敏感。在实践中,所提出的方法可作为一种工具,在尊重空间参考源的同时,尽可能地从现有数据集中获益。这也是数据融合任务降低其复杂性的重要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Approaches for Aligning Geospatial Vector Maps
Abstract. The surge in data across diverse fields presents an essential need for advanced techniques to merge and interpret this information. With a special emphasis on compiling geospatial data, this integration is crucial for unlocking new insights from geographic data, enhancing our ability to map and analyze trends that span across different locations and environments with more authenticity and reliability. Existing techniques have made progress in addressing data fusion; however, challenges persist in fusing and harmonizing data from different sources, scales, and modalities. This research presents a comprehensive investigation into the challenges and solutions in vector map alignment, focusing on developing methods that enhance the precision and usability of geospatial data. We explored and developed three distinct methodologies for polygonal vector map alignment: ProximityAlign, which excels in precision within urban layouts but faces computational challenges; the Optical Flow Deep Learning-Based Alignment, noted for its efficiency and adaptability; and the Epipolar Geometry-Based Alignment, effective in data-rich contexts but sensitive to data quality. In practice, the proposed approaches serve as tools to benefit from as much as possible from existing datasets while respecting a spatial reference source. It also serves as a paramount step for the data fusion task to reduce its complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1