{"title":"通过选择性喷射电沉积工艺实现厚涂层的新方法","authors":"Anand Mohan Pandey, S. Kapil, Manas Das","doi":"10.1177/02670844241258711","DOIUrl":null,"url":null,"abstract":"Selective Jet Electrodeposition (SJED) emerges as a cutting-edge Additive Manufacturing technology, offering the ability to produce metallic components at both nano and micro scales. In SJED, metallic deposition occurs atom by atom, showcasing potential applications for electroplating (coating) purposes. Achieving a smooth and void-free coating necessitates optimisation of layer height, width and the centre distance between two adjacent beads. An ANOVA study is performed to identify the most impactful input process parameters among source voltage, scan speed and frequency. It evaluates their contribution to the output responses (layer height and width). Furthermore, Response Surface Methodology is performed to obtain the optimal parameters to achieve maximum layer height and minimum layer width. Additionally, multi-bead optimisation is performed to achieve a flat surface condition. Subsequently, a coating is carried out using a toolpath, and a comparative analysis is conducted with the conventional coating method in terms of mechanical properties. The SJED-based coating exhibits superior characteristics compared to conventional coating.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach of thick coating through selective jet electrodeposition process\",\"authors\":\"Anand Mohan Pandey, S. Kapil, Manas Das\",\"doi\":\"10.1177/02670844241258711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective Jet Electrodeposition (SJED) emerges as a cutting-edge Additive Manufacturing technology, offering the ability to produce metallic components at both nano and micro scales. In SJED, metallic deposition occurs atom by atom, showcasing potential applications for electroplating (coating) purposes. Achieving a smooth and void-free coating necessitates optimisation of layer height, width and the centre distance between two adjacent beads. An ANOVA study is performed to identify the most impactful input process parameters among source voltage, scan speed and frequency. It evaluates their contribution to the output responses (layer height and width). Furthermore, Response Surface Methodology is performed to obtain the optimal parameters to achieve maximum layer height and minimum layer width. Additionally, multi-bead optimisation is performed to achieve a flat surface condition. Subsequently, a coating is carried out using a toolpath, and a comparative analysis is conducted with the conventional coating method in terms of mechanical properties. The SJED-based coating exhibits superior characteristics compared to conventional coating.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/02670844241258711\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670844241258711","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
A novel approach of thick coating through selective jet electrodeposition process
Selective Jet Electrodeposition (SJED) emerges as a cutting-edge Additive Manufacturing technology, offering the ability to produce metallic components at both nano and micro scales. In SJED, metallic deposition occurs atom by atom, showcasing potential applications for electroplating (coating) purposes. Achieving a smooth and void-free coating necessitates optimisation of layer height, width and the centre distance between two adjacent beads. An ANOVA study is performed to identify the most impactful input process parameters among source voltage, scan speed and frequency. It evaluates their contribution to the output responses (layer height and width). Furthermore, Response Surface Methodology is performed to obtain the optimal parameters to achieve maximum layer height and minimum layer width. Additionally, multi-bead optimisation is performed to achieve a flat surface condition. Subsequently, a coating is carried out using a toolpath, and a comparative analysis is conducted with the conventional coating method in terms of mechanical properties. The SJED-based coating exhibits superior characteristics compared to conventional coating.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.