预报亚热带湿润地区的日降雨量:一种创新的机器学习方法

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-06-11 DOI:10.2166/hydro.2024.016
M. Mohammed, S. Latif
{"title":"预报亚热带湿润地区的日降雨量:一种创新的机器学习方法","authors":"M. Mohammed, S. Latif","doi":"10.2166/hydro.2024.016","DOIUrl":null,"url":null,"abstract":"\n \n Hydrological modeling is one of the most complicated tasks in sustainable water resources management, particularly in terms of predicting rainfall. Predicting rainfall is critical to build a sustainable society in terms of hydropower operations, agricultural planning, and flood control. In this study, a hybrid model based on the integration of k-nearest neighbor (KNN), XGBoost (XGB), decision tree (DCT), and Random Forest (RF) has been developed and implemented for forecasting daily rainfall for the first time at Sydney airport, Australia. Daily rainfall, temperature, evaporation, and humidity have been selected as input parameters. Three statistical measurements, namely, root mean square error (RMSE), Coefficient of determination (R2), mean absolute error (MAE), and Normalized Root Mean Square Error (NRMSE) have been utilized in order to check the accuracy of the proposed model. A sensitivity analysis was conducted, and the results indicated that for the purpose of prediction, the temperature, humidity, and evaporation were highly sensitive to the rainfall data. According to the results, the developed hybrid model was capable of predicting daily rainfall with high performance for both training and testing parts with RMSE = 0.124, R2 = 0.999, MAE = 0.007, NRMSE = 0.04 and RMSE = 1.246, R2 = 0.991, MAE = 0.109, NRMSE = 0.339, respectively.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting daily rainfall in a humid subtropical area: an innovative machine learning approach\",\"authors\":\"M. Mohammed, S. Latif\",\"doi\":\"10.2166/hydro.2024.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Hydrological modeling is one of the most complicated tasks in sustainable water resources management, particularly in terms of predicting rainfall. Predicting rainfall is critical to build a sustainable society in terms of hydropower operations, agricultural planning, and flood control. In this study, a hybrid model based on the integration of k-nearest neighbor (KNN), XGBoost (XGB), decision tree (DCT), and Random Forest (RF) has been developed and implemented for forecasting daily rainfall for the first time at Sydney airport, Australia. Daily rainfall, temperature, evaporation, and humidity have been selected as input parameters. Three statistical measurements, namely, root mean square error (RMSE), Coefficient of determination (R2), mean absolute error (MAE), and Normalized Root Mean Square Error (NRMSE) have been utilized in order to check the accuracy of the proposed model. A sensitivity analysis was conducted, and the results indicated that for the purpose of prediction, the temperature, humidity, and evaporation were highly sensitive to the rainfall data. According to the results, the developed hybrid model was capable of predicting daily rainfall with high performance for both training and testing parts with RMSE = 0.124, R2 = 0.999, MAE = 0.007, NRMSE = 0.04 and RMSE = 1.246, R2 = 0.991, MAE = 0.109, NRMSE = 0.339, respectively.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.016\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

水文建模是可持续水资源管理中最复杂的任务之一,尤其是在预测降雨方面。在水电运行、农业规划和防洪方面,预测降雨量对于建设可持续发展社会至关重要。本研究首次在澳大利亚悉尼机场开发并实施了一种基于 k-nearest neighbor (KNN)、XGBoost (XGB)、决策树 (DCT) 和随机森林 (RF) 集成的混合模型,用于预测日降雨量。输入参数包括日降雨量、温度、蒸发量和湿度。为了检验建议模型的准确性,使用了三种统计测量方法,即均方根误差 (RMSE)、判定系数 (R2)、平均绝对误差 (MAE) 和归一化均方根误差 (NRMSE)。进行了敏感性分析,结果表明,就预测而言,温度、湿度和蒸发量对降雨量数据高度敏感。结果表明,所开发的混合模型能够以较高的性能预测训练和测试部分的日降雨量,RMSE = 0.124,R2 = 0.999,MAE = 0.007,NRMSE = 0.04;RMSE = 1.246,R2 = 0.991,MAE = 0.109,NRMSE = 0.339。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting daily rainfall in a humid subtropical area: an innovative machine learning approach
Hydrological modeling is one of the most complicated tasks in sustainable water resources management, particularly in terms of predicting rainfall. Predicting rainfall is critical to build a sustainable society in terms of hydropower operations, agricultural planning, and flood control. In this study, a hybrid model based on the integration of k-nearest neighbor (KNN), XGBoost (XGB), decision tree (DCT), and Random Forest (RF) has been developed and implemented for forecasting daily rainfall for the first time at Sydney airport, Australia. Daily rainfall, temperature, evaporation, and humidity have been selected as input parameters. Three statistical measurements, namely, root mean square error (RMSE), Coefficient of determination (R2), mean absolute error (MAE), and Normalized Root Mean Square Error (NRMSE) have been utilized in order to check the accuracy of the proposed model. A sensitivity analysis was conducted, and the results indicated that for the purpose of prediction, the temperature, humidity, and evaporation were highly sensitive to the rainfall data. According to the results, the developed hybrid model was capable of predicting daily rainfall with high performance for both training and testing parts with RMSE = 0.124, R2 = 0.999, MAE = 0.007, NRMSE = 0.04 and RMSE = 1.246, R2 = 0.991, MAE = 0.109, NRMSE = 0.339, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1