{"title":"利用轻量级集成学习(XGBoost)模型快速预测丝织物上天然染料的最佳反应条件和染色效果","authors":"Jie Chen, Yuyang Lin, Ying Liu","doi":"10.1111/cote.12777","DOIUrl":null,"url":null,"abstract":"There is a lot of repetitive work involved in exploring the dyeing performance of natural dyes. To improve the experimental efficiency, save material, reduce time costs and shorten the research cycle, this study collects and analyses the literature data of 350 natural dye experiments to construct the Natural Dyes Dataset, and achieves rapid prediction of the optimal reaction conditions and dyeing effects of natural dyes using a lightweight integrated learning model. The size of the trained XGBoost model is only 562 KB; only the name of the dye and its approximate chemical composition need to be input to predict the results of the reaction environment pH, colour fastness to washing (CFW) and colour fastness to rubbing (CFR) of the natural dye on silk fabrics with the highest K/S in a very short time of 52 ms. The prediction accuracies for pH, CFW and CFR in the validation set are as high as 94.12%, 93.75% and 100%, respectively, and 77.78%, 91.67% and 83.33% for the real test set, with both validity and transferability. The integrated learning approach provides valuable guidance for exploring the dyeing performance of natural dyes with very small deployment costs and a very short inference time, expanding the possibilities of cross‐application of the disciplines of machine learning and textile dyeing.","PeriodicalId":10502,"journal":{"name":"Coloration Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast prediction of optimal reaction conditions and dyeing effects of natural dyes on silk fabrics by lightweight integrated learning (XGBoost) models\",\"authors\":\"Jie Chen, Yuyang Lin, Ying Liu\",\"doi\":\"10.1111/cote.12777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a lot of repetitive work involved in exploring the dyeing performance of natural dyes. To improve the experimental efficiency, save material, reduce time costs and shorten the research cycle, this study collects and analyses the literature data of 350 natural dye experiments to construct the Natural Dyes Dataset, and achieves rapid prediction of the optimal reaction conditions and dyeing effects of natural dyes using a lightweight integrated learning model. The size of the trained XGBoost model is only 562 KB; only the name of the dye and its approximate chemical composition need to be input to predict the results of the reaction environment pH, colour fastness to washing (CFW) and colour fastness to rubbing (CFR) of the natural dye on silk fabrics with the highest K/S in a very short time of 52 ms. The prediction accuracies for pH, CFW and CFR in the validation set are as high as 94.12%, 93.75% and 100%, respectively, and 77.78%, 91.67% and 83.33% for the real test set, with both validity and transferability. The integrated learning approach provides valuable guidance for exploring the dyeing performance of natural dyes with very small deployment costs and a very short inference time, expanding the possibilities of cross‐application of the disciplines of machine learning and textile dyeing.\",\"PeriodicalId\":10502,\"journal\":{\"name\":\"Coloration Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coloration Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/cote.12777\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coloration Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/cote.12777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Fast prediction of optimal reaction conditions and dyeing effects of natural dyes on silk fabrics by lightweight integrated learning (XGBoost) models
There is a lot of repetitive work involved in exploring the dyeing performance of natural dyes. To improve the experimental efficiency, save material, reduce time costs and shorten the research cycle, this study collects and analyses the literature data of 350 natural dye experiments to construct the Natural Dyes Dataset, and achieves rapid prediction of the optimal reaction conditions and dyeing effects of natural dyes using a lightweight integrated learning model. The size of the trained XGBoost model is only 562 KB; only the name of the dye and its approximate chemical composition need to be input to predict the results of the reaction environment pH, colour fastness to washing (CFW) and colour fastness to rubbing (CFR) of the natural dye on silk fabrics with the highest K/S in a very short time of 52 ms. The prediction accuracies for pH, CFW and CFR in the validation set are as high as 94.12%, 93.75% and 100%, respectively, and 77.78%, 91.67% and 83.33% for the real test set, with both validity and transferability. The integrated learning approach provides valuable guidance for exploring the dyeing performance of natural dyes with very small deployment costs and a very short inference time, expanding the possibilities of cross‐application of the disciplines of machine learning and textile dyeing.
期刊介绍:
The primary mission of Coloration Technology is to promote innovation and fundamental understanding in the science and technology of coloured materials by providing a medium for communication of peer-reviewed research papers of the highest quality. It is internationally recognised as a vehicle for the publication of theoretical and technological papers on the subjects allied to all aspects of coloration. Regular sections in the journal include reviews, original research and reports, feature articles, short communications and book reviews.