基于应力-腐蚀模型的重型车辆反复荷载下露天台阶边坡稳定性分析

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2024-06-10 DOI:10.24425/ams.2024.150342
Lichun Zhao, Zhiguo Li, Yongjie Liu, Yongchao Xu, P. Wasantha, Xiaobin Zheng, Tao Xu
{"title":"基于应力-腐蚀模型的重型车辆反复荷载下露天台阶边坡稳定性分析","authors":"Lichun Zhao, Zhiguo Li, Yongjie Liu, Yongchao Xu, P. Wasantha, Xiaobin Zheng, Tao Xu","doi":"10.24425/ams.2024.150342","DOIUrl":null,"url":null,"abstract":"In the present study, we address an important and increasingly relevant topic in mining safety and efficiency, namely the stability of open-pit bench slopes subjected to daily heavy truck cyclic loading. Specifically, we focus on the stability of Zhahanur open-pit slope (Inner Mongolia region, China) and investigate the potential role of daily heavy truck cyclic loading in bench slope instability. To this end, we incorporate a stress corrosion model into the particle flow code to develop a time-dependent deformation model of the rock. With the established model, we quantitatively analyse the effect of heavy truck cyclic loading on the bench slope stability. Our results support the hypothesis that daily heavy truck loading can cause gradual downward deformation of a rock mass, leading to slope instability. To validate our numerical modelling results, we compare and analyse them with in situ monitoring data. Our study demonstrates the significant impact of daily heavy vehicles on bench slope stability in open-pit mines and provides a practical tool for assessing the long-term stability of open-pit bench slopes and optimising mining operations.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Open-Pit Bench Slope under Repeated Heavy Vehicle Loading Based on Stress-Corrosion Model\",\"authors\":\"Lichun Zhao, Zhiguo Li, Yongjie Liu, Yongchao Xu, P. Wasantha, Xiaobin Zheng, Tao Xu\",\"doi\":\"10.24425/ams.2024.150342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we address an important and increasingly relevant topic in mining safety and efficiency, namely the stability of open-pit bench slopes subjected to daily heavy truck cyclic loading. Specifically, we focus on the stability of Zhahanur open-pit slope (Inner Mongolia region, China) and investigate the potential role of daily heavy truck cyclic loading in bench slope instability. To this end, we incorporate a stress corrosion model into the particle flow code to develop a time-dependent deformation model of the rock. With the established model, we quantitatively analyse the effect of heavy truck cyclic loading on the bench slope stability. Our results support the hypothesis that daily heavy truck loading can cause gradual downward deformation of a rock mass, leading to slope instability. To validate our numerical modelling results, we compare and analyse them with in situ monitoring data. Our study demonstrates the significant impact of daily heavy vehicles on bench slope stability in open-pit mines and provides a practical tool for assessing the long-term stability of open-pit bench slopes and optimising mining operations.\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/ams.2024.150342\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2024.150342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们探讨了采矿安全和效率方面一个重要且日益相关的课题,即露天采场边坡在日常重型卡车循环载荷作用下的稳定性。具体而言,我们重点研究了扎哈淖尔露天矿边坡(中国内蒙古地区)的稳定性,并调查了日常重型卡车循环载荷在边坡不稳定性中的潜在作用。为此,我们在粒子流代码中加入了应力腐蚀模型,以建立随时间变化的岩石变形模型。利用建立的模型,我们定量分析了重型卡车循环载荷对台阶边坡稳定性的影响。我们的结果支持这样的假设,即重型卡车的日常载荷会导致岩体逐渐向下变形,从而导致边坡失稳。为了验证我们的数值模拟结果,我们将其与现场监测数据进行了比较和分析。我们的研究证明了日常重型车辆对露天矿台阶边坡稳定性的重大影响,并为评估露天矿台阶边坡的长期稳定性和优化采矿作业提供了实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability Analysis of Open-Pit Bench Slope under Repeated Heavy Vehicle Loading Based on Stress-Corrosion Model
In the present study, we address an important and increasingly relevant topic in mining safety and efficiency, namely the stability of open-pit bench slopes subjected to daily heavy truck cyclic loading. Specifically, we focus on the stability of Zhahanur open-pit slope (Inner Mongolia region, China) and investigate the potential role of daily heavy truck cyclic loading in bench slope instability. To this end, we incorporate a stress corrosion model into the particle flow code to develop a time-dependent deformation model of the rock. With the established model, we quantitatively analyse the effect of heavy truck cyclic loading on the bench slope stability. Our results support the hypothesis that daily heavy truck loading can cause gradual downward deformation of a rock mass, leading to slope instability. To validate our numerical modelling results, we compare and analyse them with in situ monitoring data. Our study demonstrates the significant impact of daily heavy vehicles on bench slope stability in open-pit mines and provides a practical tool for assessing the long-term stability of open-pit bench slopes and optimising mining operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
The Influence of Geotechnical, Geological and Mining Factors on the Formation of Sinkholes at Lubambe Mine, Zambia The Influence of Rope Guide Sleeve Clearance on the Lateral Oscillation of Rope Guided Conveyance in Mine Hoist System caused by the Aerodynamic Force Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel Strength and Crack Propagation Analysis of Layered Backfill Based on Energy Theory Analysis of Factors Influencing Carbon Footprint Reduction in Construction Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1