{"title":"在 Ni/ZrO2 催化剂上协同热解柏木锯屑和绿藻:合成气产量和碳排放","authors":"Ziliang Wan, Wei Sun, Longjin Tian, Guozhi Fan, Cheng Pan, Qunpeng Cheng","doi":"10.1002/ep.14441","DOIUrl":null,"url":null,"abstract":"<p>In order to promote syngas yield and reduce carbon emission, Ni loaded ZrO<sub>2</sub> (Ni/ZrO<sub>2</sub>) catalysts were prepared for the co-pyrolysis of cypress sawdust and green algae in a two stage fixed bed reactor. The syngas yield, syngas component, and carbon emission were investigated. The results showed that Ni/ZrO<sub>2</sub> catalyst could obviously increase the combustible gas component in syngas. H<sub>2</sub> content was increased from 7.5% (single component) and 8.12% (co-pyrolysis) to 16.56% (catalytic pyrolysis). CO content was also increased from 19.62% (single component) and 19.46% (co-pyrolysis) to 25.94% (catalytic pyrolysis). However the catalyst had a little effect on the syngas yield compared with single component pyrolysis and co-pyrolysis. The pyrolysis temperature could make great influence on the carbon emission. The carbon emission reduction was increased from 33.32 to 234.25 g CO<sub>2</sub> and from 105.94 to 369.23 g CO<sub>2</sub>, respectively for green algae and cypress sawdust.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-pyrolysis of cypress sawdust and green algae over Ni/ZrO2 catalyst: Syngas yield and carbon emission\",\"authors\":\"Ziliang Wan, Wei Sun, Longjin Tian, Guozhi Fan, Cheng Pan, Qunpeng Cheng\",\"doi\":\"10.1002/ep.14441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to promote syngas yield and reduce carbon emission, Ni loaded ZrO<sub>2</sub> (Ni/ZrO<sub>2</sub>) catalysts were prepared for the co-pyrolysis of cypress sawdust and green algae in a two stage fixed bed reactor. The syngas yield, syngas component, and carbon emission were investigated. The results showed that Ni/ZrO<sub>2</sub> catalyst could obviously increase the combustible gas component in syngas. H<sub>2</sub> content was increased from 7.5% (single component) and 8.12% (co-pyrolysis) to 16.56% (catalytic pyrolysis). CO content was also increased from 19.62% (single component) and 19.46% (co-pyrolysis) to 25.94% (catalytic pyrolysis). However the catalyst had a little effect on the syngas yield compared with single component pyrolysis and co-pyrolysis. The pyrolysis temperature could make great influence on the carbon emission. The carbon emission reduction was increased from 33.32 to 234.25 g CO<sub>2</sub> and from 105.94 to 369.23 g CO<sub>2</sub>, respectively for green algae and cypress sawdust.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14441\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14441","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Co-pyrolysis of cypress sawdust and green algae over Ni/ZrO2 catalyst: Syngas yield and carbon emission
In order to promote syngas yield and reduce carbon emission, Ni loaded ZrO2 (Ni/ZrO2) catalysts were prepared for the co-pyrolysis of cypress sawdust and green algae in a two stage fixed bed reactor. The syngas yield, syngas component, and carbon emission were investigated. The results showed that Ni/ZrO2 catalyst could obviously increase the combustible gas component in syngas. H2 content was increased from 7.5% (single component) and 8.12% (co-pyrolysis) to 16.56% (catalytic pyrolysis). CO content was also increased from 19.62% (single component) and 19.46% (co-pyrolysis) to 25.94% (catalytic pyrolysis). However the catalyst had a little effect on the syngas yield compared with single component pyrolysis and co-pyrolysis. The pyrolysis temperature could make great influence on the carbon emission. The carbon emission reduction was increased from 33.32 to 234.25 g CO2 and from 105.94 to 369.23 g CO2, respectively for green algae and cypress sawdust.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.