利用深度学习模型从中药中发现胆碱酯酶抑制剂

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Research Pub Date : 2024-06-08 DOI:10.1007/s00044-024-03238-8
Fulu Pan, Yang Liu, Zhiqiang Luo, Guopeng Wang, Xueyan Li, Huining Liu, Shuang Yu, Dongying Qi, Xinyu Wang, Xiaoyu Chai, Qianqian Wang, Renfang Yin, Yanli Pan
{"title":"利用深度学习模型从中药中发现胆碱酯酶抑制剂","authors":"Fulu Pan,&nbsp;Yang Liu,&nbsp;Zhiqiang Luo,&nbsp;Guopeng Wang,&nbsp;Xueyan Li,&nbsp;Huining Liu,&nbsp;Shuang Yu,&nbsp;Dongying Qi,&nbsp;Xinyu Wang,&nbsp;Xiaoyu Chai,&nbsp;Qianqian Wang,&nbsp;Renfang Yin,&nbsp;Yanli Pan","doi":"10.1007/s00044-024-03238-8","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional Chinese medicine (TCM) holds distinctive advantages in the management of Alzheimer’s disease. Nonetheless, a considerable gap remains in our understanding of its pharmacologically active constituents. In this study, we harnessed the potential of deep learning models to swiftly and precisely predict drug-target interactions. We conducted a systematic screening of cholinesterase (ChE) inhibitors from an extensive array of TCM ingredients, followed by rigorous validation through in vitro experiments. We constructed both a drug-target interactions (DTI) model and a blood-brain barrier permeability (BBBP) model, with both models achieving an AUPRC score exceeding 0.9. Subsequently, we conducted a screening process that identified six compounds for in vitro ChE inhibitory assay. Notably, all six compounds exhibited a robust inhibitory effect on acetylcholinesterase (AChE), while four of the six compounds demonstrated potent inhibitory activity against butyrylcholinesterase (BChE). Our findings underscore the promise of leveraging deep learning to discover inhibitors from TCM.</p></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 7","pages":"1154 - 1166"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering cholinesterase inhibitors from Chinese herbal medicine with deep learning models\",\"authors\":\"Fulu Pan,&nbsp;Yang Liu,&nbsp;Zhiqiang Luo,&nbsp;Guopeng Wang,&nbsp;Xueyan Li,&nbsp;Huining Liu,&nbsp;Shuang Yu,&nbsp;Dongying Qi,&nbsp;Xinyu Wang,&nbsp;Xiaoyu Chai,&nbsp;Qianqian Wang,&nbsp;Renfang Yin,&nbsp;Yanli Pan\",\"doi\":\"10.1007/s00044-024-03238-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional Chinese medicine (TCM) holds distinctive advantages in the management of Alzheimer’s disease. Nonetheless, a considerable gap remains in our understanding of its pharmacologically active constituents. In this study, we harnessed the potential of deep learning models to swiftly and precisely predict drug-target interactions. We conducted a systematic screening of cholinesterase (ChE) inhibitors from an extensive array of TCM ingredients, followed by rigorous validation through in vitro experiments. We constructed both a drug-target interactions (DTI) model and a blood-brain barrier permeability (BBBP) model, with both models achieving an AUPRC score exceeding 0.9. Subsequently, we conducted a screening process that identified six compounds for in vitro ChE inhibitory assay. Notably, all six compounds exhibited a robust inhibitory effect on acetylcholinesterase (AChE), while four of the six compounds demonstrated potent inhibitory activity against butyrylcholinesterase (BChE). Our findings underscore the promise of leveraging deep learning to discover inhibitors from TCM.</p></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"33 7\",\"pages\":\"1154 - 1166\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-024-03238-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03238-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

传统中药在治疗阿尔茨海默病方面具有独特的优势。然而,我们对中药药理活性成分的了解仍有相当大的差距。在本研究中,我们利用深度学习模型的潜力,快速准确地预测药物与靶点的相互作用。我们从大量中药成分中系统地筛选了胆碱酯酶(ChE)抑制剂,并通过体外实验进行了严格验证。我们构建了药物-靶点相互作用(DTI)模型和血脑屏障渗透性(BBBP)模型,两个模型的AUPRC得分均超过0.9。随后,我们进行了筛选,确定了六种化合物用于体外 ChE 抑制试验。值得注意的是,所有这六种化合物都对乙酰胆碱酯酶(AChE)有很强的抑制作用,而六种化合物中有四种对丁酰胆碱酯酶(BChE)有很强的抑制活性。我们的研究结果凸显了利用深度学习发现中药抑制剂的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering cholinesterase inhibitors from Chinese herbal medicine with deep learning models

Traditional Chinese medicine (TCM) holds distinctive advantages in the management of Alzheimer’s disease. Nonetheless, a considerable gap remains in our understanding of its pharmacologically active constituents. In this study, we harnessed the potential of deep learning models to swiftly and precisely predict drug-target interactions. We conducted a systematic screening of cholinesterase (ChE) inhibitors from an extensive array of TCM ingredients, followed by rigorous validation through in vitro experiments. We constructed both a drug-target interactions (DTI) model and a blood-brain barrier permeability (BBBP) model, with both models achieving an AUPRC score exceeding 0.9. Subsequently, we conducted a screening process that identified six compounds for in vitro ChE inhibitory assay. Notably, all six compounds exhibited a robust inhibitory effect on acetylcholinesterase (AChE), while four of the six compounds demonstrated potent inhibitory activity against butyrylcholinesterase (BChE). Our findings underscore the promise of leveraging deep learning to discover inhibitors from TCM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
期刊最新文献
Synthesis of new Michael acceptors with cinnamamide scaffold as potential anti-breast cancer agents: cytotoxicity and ADME in silico studies Iridoid for drug discovery: Structural modifications and bioactivity studies Synthesis and antiproliferative activity of 7-substituted amide estradiol derivatives Correction: Substituted furan-carboxamide and Schiff base derivatives as potential hypolipidemic compounds: evaluation in Triton WR-1339 hyperlipidemic rat model Quinazolinone-based subchemotypes for targeting HIV-1 capsid protein: design and synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1