Kelimah Elong, Dr. Muhd Firdaus Kasim, Dr. Nurhanna Badar, Dr. Azira Azahidi, Prof. Dr. Zurina Osman
{"title":"不同温度对使用 LiNi0.3Mn0.3Co0.3Ti0.1O2 阴极材料的锂离子电池电化学性能的影响","authors":"Kelimah Elong, Dr. Muhd Firdaus Kasim, Dr. Nurhanna Badar, Dr. Azira Azahidi, Prof. Dr. Zurina Osman","doi":"10.1002/ceat.202300591","DOIUrl":null,"url":null,"abstract":"<p>LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub> (NMC 111) materials show promise as cathodes for lithium-ion batteries (LIBs). However, their widespread use is hampered by various technical challenges, including rapid capacity fading and voltage instability. The cathode materials synthesized using the combustion method were annealed at various temperatures ranging from 650 to 900 °C for 24 h. In this study, we identified an optimal annealing temperature of 750 °C for LiNi<sub>0.3</sub>Mn<sub>0.3</sub>Co<sub>0.3</sub>Ti<sub>0.1</sub>O<sub>2</sub> (NMCT) materials. NMCT-750 exhibits an initial discharge capacity of about 140.1 mAh g<sup>−1</sup> and retains the capacity of 91 % after 30th cycles. The good performance of NMCT-750 is directly attributed to reduced cation mixing and the establishment of a stable structure with small particle sizes. In contrast, higher annealing temperatures (850 °C) lead to a rapid increase in primary particle size and result in poor cycling stability. Therefore, NMCT-750, annealed at 750 °C, holds great potential as a cathode material for the next generation of LIBs.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Varying Temperatures on the Electrochemical Performance of Lithium-Ion Batteries Using LiNi0.3Mn0.3Co0.3Ti0.1O2 Cathode Materials\",\"authors\":\"Kelimah Elong, Dr. Muhd Firdaus Kasim, Dr. Nurhanna Badar, Dr. Azira Azahidi, Prof. Dr. Zurina Osman\",\"doi\":\"10.1002/ceat.202300591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub> (NMC 111) materials show promise as cathodes for lithium-ion batteries (LIBs). However, their widespread use is hampered by various technical challenges, including rapid capacity fading and voltage instability. The cathode materials synthesized using the combustion method were annealed at various temperatures ranging from 650 to 900 °C for 24 h. In this study, we identified an optimal annealing temperature of 750 °C for LiNi<sub>0.3</sub>Mn<sub>0.3</sub>Co<sub>0.3</sub>Ti<sub>0.1</sub>O<sub>2</sub> (NMCT) materials. NMCT-750 exhibits an initial discharge capacity of about 140.1 mAh g<sup>−1</sup> and retains the capacity of 91 % after 30th cycles. The good performance of NMCT-750 is directly attributed to reduced cation mixing and the establishment of a stable structure with small particle sizes. In contrast, higher annealing temperatures (850 °C) lead to a rapid increase in primary particle size and result in poor cycling stability. Therefore, NMCT-750, annealed at 750 °C, holds great potential as a cathode material for the next generation of LIBs.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300591\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300591","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Varying Temperatures on the Electrochemical Performance of Lithium-Ion Batteries Using LiNi0.3Mn0.3Co0.3Ti0.1O2 Cathode Materials
LiNi1/3Mn1/3Co1/3O2 (NMC 111) materials show promise as cathodes for lithium-ion batteries (LIBs). However, their widespread use is hampered by various technical challenges, including rapid capacity fading and voltage instability. The cathode materials synthesized using the combustion method were annealed at various temperatures ranging from 650 to 900 °C for 24 h. In this study, we identified an optimal annealing temperature of 750 °C for LiNi0.3Mn0.3Co0.3Ti0.1O2 (NMCT) materials. NMCT-750 exhibits an initial discharge capacity of about 140.1 mAh g−1 and retains the capacity of 91 % after 30th cycles. The good performance of NMCT-750 is directly attributed to reduced cation mixing and the establishment of a stable structure with small particle sizes. In contrast, higher annealing temperatures (850 °C) lead to a rapid increase in primary particle size and result in poor cycling stability. Therefore, NMCT-750, annealed at 750 °C, holds great potential as a cathode material for the next generation of LIBs.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.