Faouzia Tayari, Kais Iben Nassar, Majdi Benamara, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Silvia Soreto Teixeira, M. P. F. Graça
{"title":"对溶胶-凝胶合成 Ba0.75Ni0.25Tc0.88Mn0.12O3 包晶石陶瓷介电和导电动态的深入研究","authors":"Faouzia Tayari, Kais Iben Nassar, Majdi Benamara, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Silvia Soreto Teixeira, M. P. F. Graça","doi":"10.1007/s10971-024-06425-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive investigation into the structural, morphological, and electrical properties of sol-gel synthesized Ba<sub>0.75</sub>Ni<sub>0.25</sub>Tc<sub>0.88</sub>Mn<sub>0</sub>.<sub>12</sub>O<sub>3</sub> perovskite ceramic (BNTMO). The meticulous preparation protocol, involving solvating various precursors, was followed by an extensive characterization employing X-ray diffraction, scanning electron microscopy, and dielectric studies. XRD analysis affirmed the single-phase single-phase cubic structure with Pm-3m space, while SEM revealed a well-defined morphology with an average particle size of 243 nm. The electrical conductivity exploration, elucidated through Jonscher’s universal power law, provided insights into charge carrier dynamics, exhibiting semiconductor behavior. Impedance spectroscopy unraveled a distinctive relaxation peak, corroborated by Cole-Cole plots, unveiling a unique charge carrier mechanism. Dielectric studies showcased intriguing polarization dynamics, indicating promising applications in energy storage. The convergence of activation energy values from various analyses underscores the coherence in the charge carrier relaxation process. Overall, our findings contribute to a nuanced understanding of the electrical intricacies of BNTMO, presenting avenues for its utilization in advanced technological applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06425-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Insights into dielectric and electrical conductivity dynamics in sol-gel synthesized Ba0.75Ni0.25Tc0.88Mn0.12O3 perovskite ceramic\",\"authors\":\"Faouzia Tayari, Kais Iben Nassar, Majdi Benamara, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Silvia Soreto Teixeira, M. P. F. Graça\",\"doi\":\"10.1007/s10971-024-06425-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive investigation into the structural, morphological, and electrical properties of sol-gel synthesized Ba<sub>0.75</sub>Ni<sub>0.25</sub>Tc<sub>0.88</sub>Mn<sub>0</sub>.<sub>12</sub>O<sub>3</sub> perovskite ceramic (BNTMO). The meticulous preparation protocol, involving solvating various precursors, was followed by an extensive characterization employing X-ray diffraction, scanning electron microscopy, and dielectric studies. XRD analysis affirmed the single-phase single-phase cubic structure with Pm-3m space, while SEM revealed a well-defined morphology with an average particle size of 243 nm. The electrical conductivity exploration, elucidated through Jonscher’s universal power law, provided insights into charge carrier dynamics, exhibiting semiconductor behavior. Impedance spectroscopy unraveled a distinctive relaxation peak, corroborated by Cole-Cole plots, unveiling a unique charge carrier mechanism. Dielectric studies showcased intriguing polarization dynamics, indicating promising applications in energy storage. The convergence of activation energy values from various analyses underscores the coherence in the charge carrier relaxation process. Overall, our findings contribute to a nuanced understanding of the electrical intricacies of BNTMO, presenting avenues for its utilization in advanced technological applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10971-024-06425-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06425-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06425-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Insights into dielectric and electrical conductivity dynamics in sol-gel synthesized Ba0.75Ni0.25Tc0.88Mn0.12O3 perovskite ceramic
This study presents a comprehensive investigation into the structural, morphological, and electrical properties of sol-gel synthesized Ba0.75Ni0.25Tc0.88Mn0.12O3 perovskite ceramic (BNTMO). The meticulous preparation protocol, involving solvating various precursors, was followed by an extensive characterization employing X-ray diffraction, scanning electron microscopy, and dielectric studies. XRD analysis affirmed the single-phase single-phase cubic structure with Pm-3m space, while SEM revealed a well-defined morphology with an average particle size of 243 nm. The electrical conductivity exploration, elucidated through Jonscher’s universal power law, provided insights into charge carrier dynamics, exhibiting semiconductor behavior. Impedance spectroscopy unraveled a distinctive relaxation peak, corroborated by Cole-Cole plots, unveiling a unique charge carrier mechanism. Dielectric studies showcased intriguing polarization dynamics, indicating promising applications in energy storage. The convergence of activation energy values from various analyses underscores the coherence in the charge carrier relaxation process. Overall, our findings contribute to a nuanced understanding of the electrical intricacies of BNTMO, presenting avenues for its utilization in advanced technological applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.