在 10 Wcm-2 的 637 nm 激光辐照条件下设计和鉴定效率为 53.5% 的基于 GaInP 的光电转换器

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-06-08 DOI:10.1002/solr.202400278
Pablo Sanmartín, Eduardo F. Fernández, Antonio García-Loureiro, Jesús Montes-Romero, Aitana Cano, Pablo Martín, Ignacio Rey-Stolle, Iván García, Florencia Almonacid
{"title":"在 10 Wcm-2 的 637 nm 激光辐照条件下设计和鉴定效率为 53.5% 的基于 GaInP 的光电转换器","authors":"Pablo Sanmartín,&nbsp;Eduardo F. Fernández,&nbsp;Antonio García-Loureiro,&nbsp;Jesús Montes-Romero,&nbsp;Aitana Cano,&nbsp;Pablo Martín,&nbsp;Ignacio Rey-Stolle,&nbsp;Iván García,&nbsp;Florencia Almonacid","doi":"10.1002/solr.202400278","DOIUrl":null,"url":null,"abstract":"<p>High-power optical transmission (HPOT) technology has emerged as a promising alternative among far-field wireless power transmission approaches, enabling the transfer of kilowatts of power over kilometer-scale distances. Its exceptional adaptability allows operation in challenging scenarios where traditional electrical wiring is impractical or unfeasible, thereby opening up a vast array of potential applications previously considered utopian. An important pending assignment in enhancing the performance of laser-based HPOT systems is achieving efficient photovoltaic conversion of high power densities (≥10 W cm<sup>−2</sup>). In this sense, there is a pressing need for the advancement of optical photovoltaic converters (OPCs) capable of enduring intense monochromatic irradiances. This work presents the design optimization, manufacturing, and characterization processes of a gallium indium phosphide (GaInP)-based OPC under varying 637 nm laser power at room temperature. In addition, methods to evaluate the impact of temperature on performance are provided. The findings reveal a maximum efficiency of 53.5% at 10 W cm<sup>−2</sup>, surpassing literature results for GaInP converters by over 9%<sub>abs</sub> at those light intensities. Remarkably, this device withstands unmatched irradiances within GaInP OPCs up to 60 W cm<sup>−2</sup>, maintaining 42.3% efficiency. This study aims to push forward the development of wide-bandgap power converters with recordbreaking efficiencies paving the way for new applications.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400278","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of a 53.5% Efficient Gallium Indium Phosphide-Based Optical Photovoltaic Converter under 637 nm Laser Irradiation at 10 W cm−2\",\"authors\":\"Pablo Sanmartín,&nbsp;Eduardo F. Fernández,&nbsp;Antonio García-Loureiro,&nbsp;Jesús Montes-Romero,&nbsp;Aitana Cano,&nbsp;Pablo Martín,&nbsp;Ignacio Rey-Stolle,&nbsp;Iván García,&nbsp;Florencia Almonacid\",\"doi\":\"10.1002/solr.202400278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-power optical transmission (HPOT) technology has emerged as a promising alternative among far-field wireless power transmission approaches, enabling the transfer of kilowatts of power over kilometer-scale distances. Its exceptional adaptability allows operation in challenging scenarios where traditional electrical wiring is impractical or unfeasible, thereby opening up a vast array of potential applications previously considered utopian. An important pending assignment in enhancing the performance of laser-based HPOT systems is achieving efficient photovoltaic conversion of high power densities (≥10 W cm<sup>−2</sup>). In this sense, there is a pressing need for the advancement of optical photovoltaic converters (OPCs) capable of enduring intense monochromatic irradiances. This work presents the design optimization, manufacturing, and characterization processes of a gallium indium phosphide (GaInP)-based OPC under varying 637 nm laser power at room temperature. In addition, methods to evaluate the impact of temperature on performance are provided. The findings reveal a maximum efficiency of 53.5% at 10 W cm<sup>−2</sup>, surpassing literature results for GaInP converters by over 9%<sub>abs</sub> at those light intensities. Remarkably, this device withstands unmatched irradiances within GaInP OPCs up to 60 W cm<sup>−2</sup>, maintaining 42.3% efficiency. This study aims to push forward the development of wide-bandgap power converters with recordbreaking efficiencies paving the way for new applications.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 15\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400278\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400278\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高功率光传输(HPOT)技术已成为远距离无线输电方法中一种前景广阔的替代技术,可在千米距离内传输千瓦功率。高功率光传输技术具有卓越的适应性,可在传统电气布线不切实际或不可行的挑战性场景中运行,从而开辟了大量以前被认为是乌托邦式的潜在应用。提高激光 HPOT 系统性能的一项重要任务是实现高功率密度(≥10 Wcm-2)的高效光电转换。从这个意义上讲,迫切需要改进能够承受高强度单色辐照的光学光电转换器(OPC)。本研究介绍了在室温条件下,基于氮化镓(GaInP)的 OPC 在不同 637 纳米激光功率下的设计优化、制造和表征过程。此外,还提供了评估温度对性能影响的方法。研究结果表明,在 10 Wcm-2 时的最大效率为 53.5%,超过文献中 GaInP 转换器在这些光强下的结果 9%abs 以上。值得注意的是,在高达 60 Wcm-2 的 GaInP OPC 中,我们的设备能够承受无与伦比的辐照度,并保持 42.3% 的效率。这项研究旨在推动具有破纪录效率的宽带隙功率转换器的发展,为新应用铺平道路。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Characterization of a 53.5% Efficient Gallium Indium Phosphide-Based Optical Photovoltaic Converter under 637 nm Laser Irradiation at 10 W cm−2

High-power optical transmission (HPOT) technology has emerged as a promising alternative among far-field wireless power transmission approaches, enabling the transfer of kilowatts of power over kilometer-scale distances. Its exceptional adaptability allows operation in challenging scenarios where traditional electrical wiring is impractical or unfeasible, thereby opening up a vast array of potential applications previously considered utopian. An important pending assignment in enhancing the performance of laser-based HPOT systems is achieving efficient photovoltaic conversion of high power densities (≥10 W cm−2). In this sense, there is a pressing need for the advancement of optical photovoltaic converters (OPCs) capable of enduring intense monochromatic irradiances. This work presents the design optimization, manufacturing, and characterization processes of a gallium indium phosphide (GaInP)-based OPC under varying 637 nm laser power at room temperature. In addition, methods to evaluate the impact of temperature on performance are provided. The findings reveal a maximum efficiency of 53.5% at 10 W cm−2, surpassing literature results for GaInP converters by over 9%abs at those light intensities. Remarkably, this device withstands unmatched irradiances within GaInP OPCs up to 60 W cm−2, maintaining 42.3% efficiency. This study aims to push forward the development of wide-bandgap power converters with recordbreaking efficiencies paving the way for new applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1